b’ AD=A077 414

UNCLASSIFIED

OHIO STATE UNIV RESEARCH FOUNDATION COLUMBUS F/6 9/2
METHODOLOGIES FOR COMPUTER PROGRAM TESTING.(U)

AUG 79 B CHANDRASEKARAN ¢ L J WHITE AFOSR=T7=3416
OSURF=T760722/7B4741 AFOSR=TR=79=1095 NL

t

W
|

= :

i
g8
e R i

| S

oo i

=

T

::z:!eio-‘.-w

=4 T4 1

" e P R Ly 2

RF Project 765'[227!&7&1

Final Report

METHODOLOGIES FOR COMPUTER TPROGRAM TESTING

B. Chandrasekaran and I. J. White
Department of Computer and Information Science

For the Period
July 1, 1977 - June 30, 1979

U.5. AIR FORCE
Air Force Office of Scientific Research

Bolling AFB, D.C. 20332
Grant No. 77-3416

August 10, 1979

Approved for publie peleas
¢istridution unlimiteq, :

W9 11 27 035

HJC/QJ'J'I 4, ‘d..._._.______

SECUA Yy ssﬂu ATION OF Twi§ PAGE When Dete Entered)

X

i g

, #, _ REPGRY DOCUMENTATION PAGE
[J TN UM

READ INSTRUCTIONS
HEFORE COMPLETING FORM

> T GOVY ACCESSION NO
| - Agosafﬁ'f.'? 9 - 1 b _/

Y} ORECIPIENT'S CATALOG NUMBER

4 TITLE (and Subiiie). .) J o
/ j / g
JETHODOLOGIES FOR COMPUTER FPROGRAM 'rssm:uo/ ({# Final / "/:
e 4 - e X
/ & PERFORMING ORG REPORY NUMBER
,7 P .
{ -— A%
? FE‘NQ'I.J ;: 2 ‘ y » __(!lll
£ "R, /Chandrasekaran and L, ‘/vfhite (/& T

;/’AFO.\'R-??-M!_GJ

P PERFOAMING OMUANIZATION NAME AND ADORESS
The Chio State Mmiversity
Research Foundation, 1314 Kinnear Road
Columbus, Ohio 43212) 74,

O PROGHAM ELEMENT PROJEZT TASK
AREA 8 wWORK UNIT NUMBE

~ I

f /
L T o
. o

61102F .Z:md[A.'ZJ

1Y CONTROLULUING OFFICE NAME AND ADDRESS

1?7 meenn? Dave

Alsustedl, m9/

Alr Force Office of Scientific Research/NM /. f
Bolling AFB, Washingten, DC 20332 e

1. NUMBER OF PAGTES

127

& MONITORING ALEN Y NAME A ADDHESS :IV Contralting Oftice)

18 SECURITY CLASS “of thie report)

UNCLASSIFIED

- & £
/ 15a OFCLASSIFICATION DOWNGRADING]
SCwmEDULE
‘/ B]

T8 DiSTHIB L TION STATEMENT of thie Keport)
Approved for public release; distribution unlimited.
—
: /7
P Ja——
97 Dllfw 1 84 ENT (of - ebhetract entered in Block 0, (1 Mtilterent from Report)
/! s =
Lov / ’ “ v P L e DT AT
- Ao / / / J
B ' A

" SuUPP_EMENTARY TES
|
|
|
;l N O wEy WORADS (Cantinue an reverse aide i neceonsary and identify by Block sumber)
E
computer program testing, domain errors, domain testing strategy, module
i testing, program testing tools
|
I

0 A“'.ACV (Cantinue on reverse side I necassary §Ad identily by Block number)

/' This report summarizes our research, over & two-year period, on computer
program testing, in particular the development of a strategy called the
Domain Testing Strategy. For a large and important class of programs, this
strategy enables the generation of test data which can test, in principle,
for all errors in the control flow of a program. Among the constraints for
practical application of the strategy is that the predicates that affect the
control flow are linear in the input variables. The extension of the strategy

0D

| e— e

(continued on back) <f ";

UNCLASSIFIED &

SECURITY CLASSIFICAYION OF THit PAGKE /Bhan Nare Faraas

Pyt ll?lh’

07 B

NN [c/RScr e i ;

20. Abstract [continued) 28 s

Jto modular testing of programs is presented. The sensitivity of the

“ strategy to changes in certain parameters is discussed; ¢ implemen-
tation of a pilot system to generate test data using this strategy is
outlined.

A

|

UNCLASSIFIED
SECURMITY CLASSIFICATION OF THIS PAGE/When Data Entered)

FINAL TECHNICAL REPORT

AFOSR GRANT - 77-3416

FOR PERIOD
1 July 77 - 30 June 79

PRINCIPAL INVESTIGATORS:
B. Chandrasekaran !
Lee J. White 3
Department of Computer & Information Science
. The Ohio State University
L Columbus, Ohio 43210
CONTENTS
I. INTRODUCTION 1 I
IX. THEORETICAL ISSUES 1
II.1. Domain Testing Strategy 1 1
I1.2. Error Analysis 2
II.3. Summary of Basic Results 3
II.4. Extension of Strategy to Modules 4
III. IMPLEMENTATION OF A PROTOTYPE TESTING SYSTEM 8
Iv. OTHER TECHNICAL ACTIVITIES 9
V. PUBLICATIONS FROM THIS RESEARCH 9
APPENDIX A
APPENDIX B . RESEARCH (AFSC)
APPENDIX C AR FUS “'_ e . \“ 0 DS Layiowed and is
4 §oT1CE OF ° _ °0 . AfR 190-12 (TD)e
APPENDIX D This Lt il clense LAn
approved [° s uniimiteds 3
DJ\'.!‘\L"“ s a &ty
r L LUSE jcor
A e B ingorsation gt
Toctuicak

FINAL TECHNICAL REPORT, AFOSR GRANT 77-3416
FOR PERIOD 1 July 1977 - 30 June 1979

I. INTRODUCTION

Most of the emphasis in our work during the two years has been on reliable
software in general, and program testing in particular. We have developed a
testing strategy called Domaln Testing Strategy which is very promising for a
large class of data processing programs. Our efforts have been devoted to
both theoretical and practical aspects of the strategy. At the theoretical
level, we have delineated the precise conditions under which the strategy is
guaranteed to detect certain classes of errors, specified the sensitivity of
the strategy to certain error parameters in the choice of test data, and
obtained preliminary results on extending the strategy to large programs con-
structed out of modules of small programs. At the practical level, we have
been developing a prototype test system based on the strategy.

In this Report, we shall take the approach of presenting the main results
obtained in brief, intuitively meaningful terms and leave the technical
details to several appendices. Some of these appendices are copies of papers
published in the open literature, and some are technical reports.

II. THEORETICAL ISSUES

II. 1. Domain Testing Strategy

Computer programs contain two types of errors which have been identified as
computation errors and domain errors. A domain error occurs when a specific
input follows the wrong path due to an error in the control flow of the pro-
Bram. A path contains a computation error when a specific input follows the
correct path, but an error in some assignment statement causes the wrong func-
tion to be computed for one or more of the output variables. A testing stra-
tegy has been designed to detect domain errors, and the conditions under
which this strategy i{s reliable are given and characterized. A by-product

of this domain strategy {s a partial ability to detect computation errors.

It is the objective of this study to provide an analvtical foundation upon
which to base practical testing implementations.

There are limitations inherent to any testing strategy, and these also constrain
the proposed domain strategy. One such limitation might be termed coinciden-
tal correctness, which occurs when a specific test point follows an incorrect
path, and yet the output variables coincidentally are the same as if that

test point were to follow the correct path. This test point would then be

of no assistance in the detection of the domain error which caused the control
flow change. No test generation strategy can circumvent this problenm.

Another inherent testing limitation has been previously identiiied as a missing
path error, in which a required predicate does not appear in the given pro-
gram to be tested. Especially if this predicate were an equality, no testing
strategy could systematically determine that such a predicate should be present.

The control flow statements in a computer program partition the input space
into a set of mutually exclusive domains, each of which corresponds to a
particular program path and consists of input data points which cause that path
to be executed. The testing strategy generates test points to examine the
boundaries of a domain to detect whether a domain error has occurred, as either
one or more of these boundaries will have shifted or else the corresponding

PR

predicate relational operator has changed. If test points can be chosen within
€ of each boundary, the strategy is shown to be reliable in detecting domain
errors of magnitude greater than € subject to the following assumptions:

(1) coincidental correctness does not occur;

(2) missing path errors do not occur;

(3) predicates are linear in the input variables;

(4) the input space is continuous.

Assumptions (1) and (2) have been shown to be inherent to the testing process,
and cannot be entirely eliminated. However, recognition of these potential |
problems can lead to improved testing techniques. The domain testing method

has been shown to be applicable for nonlinear boundaries but the number of

required test points mav become inordinate and there are complex problems |
associated with processing nonlinear boundaries in higher dimensions. The

continuous input space assumption is not really a limitation of the proposed

testing method, but allows the parameter ¢ to be chosen arbitrarily small.

An error analvsis for discrete spaces is available and the testing strategy |
has been proved viable as long as the size of the domain is not comparable
to the discrete resolution of the space.

Next let us consider two further assumptions:
(5) predicates are simple; and
(6) adjacent domains conmpute different functions.

If assumptions (5) and (6) are imposed, the testing strategy i{s considerably |
simplified, as no more than one domain need be examined at one time in order
to select test points. Moreover, the number of test points required to test
each domain grows linearly with both the dimensionality of the input space
and the number of predicates along the path being tested.

The only completely effective testing strategy is an exhaustive test which
is totally impractical. The domain testing strategy offers a substantial
Teduction in the high cost of computer program testing, and vet can reliably
detect a major class of errors which have been characterized. In addition, 4
other tvpes of errors can be detected, such as computation errors and missing
path errors, but this detection cannot be guaranteed.

The domain strategy is currently being implemented, and will be utilized as

an experimental facility for subsequent research. A most important contri-
bution would be to indicate both programming language constructs and program-
ming techniques which are easier to test, and thus produce more reliable soft-
ware.

¥
The most comprehensive presentation of results to date is available in [1], [3], I
and (6]. (1] and (3] are attached as appendices to this report.

II. 2. Error Analysis

The objective is to provide an error analysis of the domain testing strategy.
It has been shown that some border shifts will escape detection by the strategy;
this occurs because either the test points are not selected appropriately, or
else the border shift is too close to the given border to be detected by the
selected test point. An error analysis will indicate the best locations for the
test points.

The strategy was developed for continuous spaces, but computer representation
may have to be examined as a discrete space in order to assure us that roundoff
will not introduce unacceptable errors. It has been shown that there are some
domains in a discrete space which cannot be tested by the strategy, but these
are pathological cases where one of the domain dimensions is on the order of the
lattice resolution. Moreover, a simple computation can be made to indicate when
this condition exists for a given domain.

An error analysis of domain borders is needed to resolve the following questions:

i) How small should € be chosen in selecting an OFF test point for linear
borders, and where are optimal locations for the test points?

ii) We required the OFF test point for a given border to satisfy all
inequality borders except that being tested; how do potential errors
in other borders of the domain affect this requirement?

i11) What are the difficulties in applying domain testing in a discrete

space or in a space in which numerical values can only be represented
with finite resolution, and can these difficulties be circumvented
by taking reasonable precautions with the method?

These and other error analysis problems are dealt with in detail in reference
(2] (see list of publications from existing research, Section V.) Chapter 6
of Appendix A gives a capsule summary of the error analysis results.

I1. 3. Summary of Basic Results

The basic goal of this research {s to replace the intuitive principles behtnd
Current testing procedures by a methodology based on a formal treatment of the
program testing problem. By formulating the problem in basic geometric and
algebraic terms, we have been able to develop an effective testing methodology
whose capabilities can be precisely defined. In addition, since program testing
cannot be completely effective, we have {dentified the limitations of the
strategy. In several cases these limitations have proven to be theoretical
problems inherent to the general program testing process.

The main contribution of this research is the development of the domain testing
strategy. Under certain well-defined conditions the methodology is guaranteed
to detect domain errors in linear borders greater than some small magnitude €.
Furthermore, the cost, as measured by the number of required test points, is
reasonable and grows only linearly with both the dimensionality of the input
space domain and the number of path predicates. Domain testing also detects
transformation errors and missing path errors in many cases, but the detection
of these two classes of errors cannot be guaranteed.

Domain testing has also been extended to classes of nonlinear borders, and we
have shown that the methodology generalizes to anv class of functions which
can be described by a finite number of parameters. Unfortunately, nonlinear
predicates pose problems of extra processing which probably preclude testing
except for restricted cases. For example, just finding i{ntersection points
of a set of linear and nonlinear borders can require an inordinate amount of
processing.

Coincidental correctness is a theoretical limitation inherent to the program
testing process, and we have argued that it prevents any reasonable finite
testing procedure from being completely reliable. In particular, the nossi-
bility of coincidental correctness means that an exhaustive test of all points
in an input domain i{s theoretically required to preclude the existence of
Computation errors on a path. Within the class of all computable functions

there exist functions which coincide at an arbitrarily large number of points,
but if there is sufficient resolution in the output space, coincidental correct-
ness should be a rare occurrence for functions commonly encountered in data
processing problems.

The =lass of missing path errors, particularly those of reduced dimensionality,
has proven to be another theoretical limitation to the reliabilitv of any finite
testing strategy. Although our methodology cannot be guaranteed to detect all
instances of this type or error, it can be extended to detect some well-defined
subclasses of missing path errors. Unfortunately, the extra cost of this
modification may be unacceptably high. Our analvsis of missing path errors

has shown that the cause of the difficulty is that the program does not contain
any indication of the possible existence of a missing path error. Therefore,
without additional information, a reasonable testing strategy for this class

of errors cannot be formulated.

The domain testing strategy requires a reasonable number of test points for

a single path, but the total cost may be unaccentable for a large program
containing an excessive number of paths. In particular, this mav occur for large
programs with complicated control structures containing many iteration loops.
Additional research i{s needed to substantially reduce the number of potential
paths.

II. 4. Extension of Strategy to Modules

The major drawback of the Domain Testing Strategv in its current state of
development is that {t requires testing all of the possible paths thru the
program being tested. As programs increase {n complexitv the number of
possible paths increases dramatically. This presents a severe practical
Constraint on the ability to test programs of reasonable size. (It should

be noted that this problem is inherent in all path oriented testing strategies,
and not just the Domain Testing Strategy.)

One possible approach to reducing this testing problem is motivated by con-
sidering the problem of program development. Here, too we may be faced with
a large, complicated, unmanageable task when the problem is considered in its
entirety. The suggested methodology in this case is to consider the overall
problem as a set of related units, and to develop the details of the solution
around this modular structure. In a similar manner, a testing strategv could
make use of the notion of modular structure.

If different segments of the program are developed and tested independently,
and later integrated to form the final version of the program (a kind of
"bottom up" approach), it would be nice if the validation information obtained
through these "unit tests' can be used to substantially reduce the amount

of testing that needs to be done when considering the entire program at
integration time. Thus, the primarv justification for the development of

a method of integrating independently tested program modules into a single
tested program {s to cut down the total number of paths that need be *ested,
and to keep the total number of paths reasonable as programs incre in
complexity. A secondary justification for an independent testing ‘tegy is
to make the testing procedure for a program conform to the wav pros- 8 are
developed. By modularizing the testing procedure the overall task testing
a large program becomes more manageable.

We define a module as a block of single entry single exit code, which can
contain an arbitrary amount of computation and internal control structure.
Using this characterization of module, we address the problem of integrating
independently tested modules into the testing of a program which incorporates
the Domain Testing Strategy. It will be useful to consider the following two
components of this problem separately.

1. Given an untested program that uses one or more modules that are known to
be correct, how can the Domain Testing Strategyv be applied to the program in
order to take maximum advantage of the correctness of these modules.

2. Given an untested module, how much testing need be done on the module in
order to incorporate it into the Domain Testing of a complete program with a
minumum of testing overhead. Specifically, is it enough to Domain Test the

modules which are to be incorporated into the testing strategy developed in

the solution of the first problem.

In examining the first problem it {s clear that the ideal solution would allow
the testing of the program to be performed without having to consider the
complexity of the correct modules. If this can be accomplished, then when
testing the program the correct module can be treated as a form of assignment
statement. The actual control structure of the module wouldn't need to be
considered. This type of solution is intuitively appealing because it wouldn't
require additional testing of a block of code that is already known to be
correct. However, such a solution would only be acceptable if it didn't result
in the loss of a large amount of the testing confidence that would have
been obtained {f each path through the program had been tested using the
Domain Testing Strategy.

Therefore, we shall assume that the above technique of integrating independently
tested modules will be used, and to analyze the types of errors which this
technique will allow to go undetected. Instead of looking at all types of
undetectable errors, however, we will only be concerned with the types of errors
that a complete Domain Testing of each path would have detected, but the
integrated approach would miss. The tvpes of errors that complete Domain
Testing wouldn't detect will be assumed to be undetected using the integrated
approach also. We therefore next examine the types of errors that can occur
in a program which the Domain Testing Strategy will detect.

The purpose of the Domain Testing Strategy is to detect errors in the control
structure of a program. There are two ways that an error can occur in a pro-
gram's control structure: the actual predicate could be incorrect, or a compu-
tation that occurs along some path in the program and {s then used in a
predicate could be incorrect.Given these two tvpes of errors the following
five cases can occur when integrating a correct module into a program being
tested. (In this context, we mean by ''program’ the integrated code excluding
the correct module.)
1. A predicate in the program could be incorrect.
2. A computation in the program could be incorrect, and that computation
{3 used in a predicate later in the program.
3. A computation in the program i{s incorrect, and the computation is
used in a predicate of the correct module, but i{sn't used later in a
program predicate.
4. A computation in the program is incorrect, and the result of the
computation is not used {n a predicate in either the module or the
program, but is used in a computation in the module.

5. A computation in the program {s incorrect, and the result of the
computation is used in a later program computation but is not used at
all in the module.

In the first and second cases Domain Testing will detect these errors as a

shift in thez input domain of the program. Since neither type of error would
affect the correct module, using the integrated testing approach would also
detect these tvpes of errors. Case 5 also does not affect the correct module,
SO0 the error would be detected to the extent that Domain Testing is lucky enough
to catch computation errors. However, since not as many points are being tested
with the integrated strategy we would expect some degradation in testing
confidence.

In the third case there is a possibility that the error would go undetected
using the integrated approach, vet would have been detected if all paths had
been Domain Tested. The problem occurs because the predicate in the correct
module that would have detected the error may not be executed since only one of
an arbitrarily large number of paths through the correct module will be exe-
cuted. The fourth case might also go undetected with the integrated approach.
However, even if the computation in the correct module that uses the incorrect
computation from the program lies on the path that is taken through the correct
module, the error might still go undetected. This is a case in which both the
integrated approach and Domain Testing might miss the error, but once again

it is important to note that, using the integrated approach, it appears that
there is even less chance of catching the error than with Domain Testing.

The tvpes of errors that might go undetected using the integrated approach,
but would be detected by Domain Testing each path, are sufficiently serious

to require some modification to the method of testing programs that contain
correct modules. The common feature of both tvpes of errors (cases 3 and 4
above) is that there i{s a computation error which is actually in the program,
but only shows up because of {ts effect on the correct module. One method

of avoiding this problem would be to require that in testing the program both
the output from the program, and the values that are generated in the nrogram
and used by the correct module, be validated. This in effect corresponds to
validating the inputs to the correct module, and could be accomplished in two
ways. First, an additional burden could be placed on the oracle while testing
the program, that burden being the validation of the inputs to the correct
module. A second, more appealing approach would be to treat the section of
Code preceding the correct module as a separate module which itself would be
tested independently. While this section was being tested independently its
outputs would be validated, thereby validating the inputs to the correct module.

For this second approach to work {t must be shown that the independent testing
of this section is sufficient to detect the tvpes of computation errors that
might cause {ntegration test problems. This leads to consideration of the
second problem, {dentified earlier, of developing a method of separately testing
program modules to be integrated into the testing of the complete program.

Up to this point {t has been assumed that the module that i{s being integrated
into the program being tested i{s completely correct. In general this will not
be the case, especially {f the module has been validated through testing,

since no practical testing strategy can guarantee the correctness of a progranm
of module. Ideally we would like to be able to use the Domain Testing Strategy
on the module, and then use the method described previouslv for testing the
(integrated) program without having to retest the paths through the module.

Since the ultimate goal is to Domain Test the program, {t is necessary for the
independent testing of the module to identify all errors i{in a predicate, as
well as all errors in computations that will be used later in a predicate in
either the module being tested or in the integrated program. By Domain Testing
the module,the errors in the predicates in the module as well as computation
errors which affect predicates in the module, will be detected as they will
cause a shift i{n a border in the domain of the module. However, in general
many types of errors in the computations performed in the module might go
undetected if they aren't subsequently used in a predicate in the module.

If the programs under consideration contained only linear predicates (when
viewed with respect to the entire program) then a good deal of the problem with
computation errors can be eliminated by Domain Testing. This is due to the
fact that if only linear predicates are being tested then all linear computa-
tions in the module can be validated. If the module is Domain Tested then

for each subdomain in the module a sufficient number of test points are gene-
rated by the testing strategy to span the space of the subdomain. Therefore,
if the linear computations are shown to be correct on these test points then
these computations can be assumed to be correct for anvy point in the subdomain.
This means that there can be no computation errors in a Domain Tested module
that can affect a predicate in the integrated program, so that an integration
test which {ignored the paths in the Domain Tested module will be just as ef-
fective as a test which didn't ignore them, with respect to these kind of errors.

There can, however, still be errors in nonlinear computations of a Domain Tested
module which affect later computations in the program. If the integration test
ignored the paths in the Domain Tested module, then it {s certainly possible for
the error not to show up, for those paths exercised in the integration test

may not contain the error and the set of points chosen in the unit test may

not have been sufficient to detect the error. Even if the integration test
considered all of the paths i{n the module, this kind of error might still go
undetected (depending on the kind of nonlinearity i{n the computation and the
number of points tested), though the increased number of test points reduce the
chances that this will happen.

If there were linear predicates in each module (with respect to the module's
inputs) but these predicates weren't necessarily linear when viewed with
respect to the entire program, then it {s no longer the case that there can

be no computat{on errors i{n the earlfer module which affect a predicate in

the later module., This {s because there must be a nonlinear computation in

the earlfer module, and {f all of the predicates fn that module were linear,

we may not have tested enough points to guarantee the correctness of the non-
linear computatfion. When integrating the Domai{n Tested module and ignoring

its paths (f{.e. treating {t as an ass{gmment statement), we may find that

the resulting output for the test points chosen {s correct because not enough
points were chosen to make the nonlinear computation error affect the predicate
(which looked linear when {t was tested). However, if we Domain Tested the
complete program (ignoring modularity), this predicate would have shown up

as nonlinear and enough pofnts would have been required by the testing strategy
to detect this error.

It therefore makes a difference, when considering independent module testing
using the Domain Testing Strategy, as to the kind of linearity restrictions
placec on the program being tested. Of course, the severity of this problem
with respect to Domain Testing {s not clear, since there are serious practical
problems associated with the strategy when nonlinear borders are involved.

One additional bit of overhead that would arise in the independent testing of
a module would be in identifying the input space of the module. Since the
module lies within the program, its input domain could consist of both input
variables and program variables. The oracle would have to be sufficiently
knowledgable to be able to determine the correctness of the results of the
module for any values in the module's (as opposed to the program's) input
space. But this requirement doesn't appear unreasonable in view of its con-
sistency with current views on program development.

In conclusion it appears that a method of testing modules independently can
prove to be effective with little loss of confidence in the testing procedure,
The major limitations are in the restriction of the Domain Testing procedure to
only linear borders, and in the additional burden that is placed on the oracle
that determines the correctness of the testing results.

ITI. IMPLEMENTATION OF A PROTOTYPE TESTING SYSTEM

We are currently implementing a prototvpe system as an experimental facility.
This will continue to be a major focus of research during the next year.

The system is composed of five phases, the first three are written in PL/I,
and the other two in Fortran. The system accepts a user program written in
a subset of PL/C and performs the Domain Testing Strategy on this program.

There are several restrictions on the user PL/C program for theoretical imple-
mentational reasons. Work {s being done to relax these restrictions by
expanding the svstem and studying the theoretical problems, The current re-
stricti{ons are: no arrays, no subroutines, no alphanumeric variables, single
entry/single exft blocks, and cnly two Input variables.

Once the user program {s submitted to the system, Phase One parses the user
program and loads the parsed program into a large array, with each record
containing approximately one statement. Phase One recognizes the type of state-
ment, and through recursion {t realizes the range of each tvpe of control struc-
ture. Pointers in the table are set to indicate the end of the control struc-
ture. There are three tvpes of control structures:

(1) DO loops.

(2) 1IF THEN ELSE statements.

(3) IF THEN statement.

Once Phase One is finished, Phase Two steps through the parsed program checking
the type of statement. If the statement contains some kind of arithmetic
computation, this phase then checks the linearity of the statement in terms

of the variables. If the statement {s linear then the statement is put in

a standard form for further processing. If the statement {s non-linear, the
statement {s flagged.

Phase Three takes a path through the program specified by the user, and sym-
bolically executes the path to produce a set of predicates that describe the
path. The predicates are in terms of the input variables as the result of the
symbolic execution, and the predicates together form the domain of the path

in the input space.

Phase Four takes the set of predicates gemerated for the path, and performs
a Gaussian elimination to get a description of the actual domain by way of
the constraints.

9

Phase Five takes the domain generated in phase four and plots the path domain
when there are only two input variables. Also test points are generated based
on the border of the domain. For each border there are two ON points and one
OFF point generated. These test points can then be used as inputs to test

the output and detect shifts in the domain borders.

Future extensions of the system deal with restrictions on the user language,
and the scope of the system. These extensions are:
(1) Allow subroutine.
(2) Allow more than two input variables.
(3) Allow the use of arrays and non-linear expressions.
(4) Study compound predicates.
(5) Allow alphabetic and alphanumeric variables and study their effects
on input domains.
(6) Change the user and system language to allow for portability and
more flexible use.

IV. OTHER TECHNICAL ACTIVITIES

We have regarded participation in national and {nternational professional ac-
tivities on computer program testing as an important component of our research
under this Grant. The following activities in this connection are worth
mentf{oning.
(a) Professor Chandrasekaran, one of the Principal Investigators, was
an organizer, panelist and session chairman at the Workshop on Soft-
Ware Testing and Test Documentation, held during December 1978 in
Ft. Lauderdale, Fla., under the auspices of the IEEE.
(b) Professor Chandrasekaran has undertaken to edit a Special Issue of the
IEEE Transactions on Software Engineering devoted to papers on
program testing. Most of the editorial work was done under the
auspices of the Grant. The issue itself will appear either in late
1979 or early 1980.

V. PUBLICATIONS FROM THIS RESEARCH

(1] L. J. White, E. 1. Cohen, B. Chandrasekaran, "A Domain Testing Strategy
for Computer Program Testing', OSU-CIS Research Center Technical Report,
August 1979. [Appendix A]

(2] L. J. White, F. C. Teng, H. C. Kuo, D. W. Coleman, "An Error Analysis of
the Domain Testing Strategy', OSU-CIS Research Center Technical Report,
August 1979.

(3] L. J. White and E. I. Cohen, "A Domain Testing Strategy for Computer Pro-
gram Testing', Infotech State of the Art Report, "Software Testing', 1978,
Volumes I and II. [Appendix B]

(4] L. J. White, E. I. Cohen, and B. Chandrasekaran, "Discussion of 'A Survey
of Program Testing Issues' by John B. Goodenough", discussant item in
Recent NDirections {n Software Technology, MIT Press, 1979. [Appendix cl

(5] B. Chandrasekaran, "Software Testing Tools", Computer, March 1979, pp.
102-103. ([Appendix D)

[6] L. J. White and E. 1. Cohen, "A Domain Strategy for Computer Progranm
Testing', to appear in Special Issue on Computer Program Testing, IEEE
Trans. Software Fngineering.

(OSU-CISRC-TR-78-4)

APPENDIX A

A DOMAIN STRATEGY FOR
COMPUTER PROGRAM TESTING

by

Lee J. White, Edward I. Cohen
and B. Chandrasekaran

Work performed under
Air Force Office of Scientific Research
Grant 77-3416

Computer and Information Science Research Center
The Ohio State University
Columbus, Ohio 43210

August 1978

A DOMAIN STRATEGY
FOR COMPUTER PROGRAM TESTING

Lee J. White, Edward I. Cohen, and B. Chandrasekaran

EXTENDED ABSTRACT

Computer programs contain two types of errors which have been identified as
computation errors and domain errors. A domain error occurs when a specific input
follows the wrong path due to an error in the control flow of the program. A path
contains a computation error when a specific input follows the correct path, but an
error in some assignment statement causes the wrong function to be computed for one
or more of the output variables. A testing strategy has been designed to detect
domain errors, and the conditions under which this strategy is reliable are given
and characterized. A by-product of this dome{n strategy is a partial ability to de-
tect computation errors. It is the objective of this study to provide an analytical
foundation upon which to base practical testing implementations.

There are limitations inherent to any testing strategy, and these also constrain
the proposed domain strategy. One such limitation might be termed coincidental
correctness, which occurs when a specific test point follows an incorrect path,
and yet the output variables coincidentally are the same as {f that test point were
to follow the correct path. This test point would then be of no assistance in the
detection of the domain error which caused the control flow change. No test gener-
ation strategy can circumvent this problem. Another inherent testing limitation has
been previously identified as a missing path error, in which a required predicate
does not appear in the given program to be tested. Especially if this predicate were
an equality, no testing strategy could systematically determine that such a predicate
should be present.

The control flow statements in a computer program partition the input space into
a set of mutually exclusive domains, ea:h of which corresponds to a particular pro-
gram path and consists of input data points which cause that path to be executed.
The testing strategy generates test points to examine the boundaries of a domain to
detect whether a domain error has occurred, as either one or more of these boundaries

will have shifted or else the corresponding predicate relational operator has changed.

If test points can be chosen within ¢ of each boundary, the strategy i{s shown to
be reliable in detecting domain errors of magnitude greater than ¢, subject to the
following assumptions:

(1) coincidental correctness does not occur;

(2) missing path errors do not occur;

(3) predicates are linear in the input variables;
(4) the input space {s continuous.

Assumptions (1) and (2) have been shown to be inherent to the testing process,
and cannot be entirely eliminated. However, recognition of these potential problems
can lead to i{mproved testing techniques. The domain testing method has been showm
to be applicable for nonlinear boundaries, but the number of required test points
mav become {nordinate and there are complex problems associated with processing non-
linear boundaries in higher dimensions. The continuous input space assumption is
not really a limitation of the proposed testing method, but allows the parameter ¢
to be chosen arbitrarily small. An error analysis for discrete spaces is available

and the testing strategy has been proved viable as long as the size of the domain is
not comparable to the discrete resolution of the space.

Next let us consider two further assumptions:

(5) predicates are simple; and
(6) adjacent domains compute different functions.

If assumptions (5) and (6) are imposed, the testing strategy is considerably
simplified, as no more than one domain need be examined at one time in order to
select test points. Moreover, the number of test points required to test each
domain grows linearly with both the dimensionality of the input space and the
number of predicates along the path being tested.

The only completely effective testing strategy is an exhaustive test which is
totally impractical. The domain testing strategy offers a substantial reduction in
the high cost of computer program testing, and yet can reliably detect a major class
of errors which have been characterized. In addition, other types of errors can be
detected, such as computation errors and missing path errors, but this detection
cannot be guaranteed.

The domain strategy is currently being implemented, and will be utilized as an
experimental facility for subsequent research. A most important contribution would
be to indicate both programming language constructs and programming techniques which
are easier to test, and thus produce more reliable software.

111

PREFACE AND ACKNOWLEDGMENTS

The Computer and Information Science Research Center of The Ohio
State University is an interdisciplinary research organization consisting
of staff, graduate students, and faculty of many University departments
and laboratories. This report describes research undertaken in cooperation
with the Department of Computer and Information Science. This research
was supported in part by AFOSR 77-3416.

This report was first published in the Infotech State of the Art

Report "Software Testing," Infotech International Ltd, Maidenhead, UK (1978).

TABLE OF CONTENTS

Extended Abstract i1
Preface and Acknowledgmerits 114
Chapter 1

Introduction 1
Chapter 2

Background and Preliminaries 5

2.1 Programming Language Assumptions

2.2 Program and Path Predicates

2.3 Importance of Linear Predicates

2.4 Input Space Structure

Chapter 3
Error Classification and Theoretical Limitations

3.1 Definitions of Types of Error
3.2 Fundamental Limitations

Chapter 4
The Domain Testing Strategy

4.1 The Two-Dimensional Linear Case
4.2 N-Dimensional Linear Inequalities
- 4.3 Equality and Nonequality Predicates
4.4 An Example of Error Detection Using the Domain Strategy
Chapter 5

Extensions of the Domain Testing Strategy

5.1 The General Nonlinear Case
5.2 Adjacent Domains Which Compute the Same Function
5.3 Domain Testing for Compound Predicates

Chapter 6
Error Analysis of Domain Borders and Discrete Spaces

6.1 An Error Measure for Test Point Selection

6.2 Interacting Border Segments

6.3 Discrete Space Analysis

6.4 Extensions of Error Analysis to Higher Dimensions
Chapter 7

Conclusions and Future Work

List of References

INTRODUCTION

Program testing is an inherently practical activity, since every
computer program must be tested before any confidence can be gained that

the program performs its intended function. Some of the best designed

software has required that nearly as much effort be spent planning and
implementing the testing process as was invested in the actual coding.

What the practitioner needs are better guidelines and systematic approaches
in the design of the testing process to replace the ad hoc approach which
is now so prevalent in the testing of computer software.

It would be ideal if there existed a "theory of testing" which could
be used to rigorously select program test points. The problem has unfort-
unately proven so intractable that no comprehensive testing theory exists.
Research by Goodenough and Gerhart [7] and Howden [8,9] has resulted in an
accepted body of theory concerning testing, and has provided a rigorous basis
for further research in this area.

The objective of this paper is to present a methodology for the automatic
selection of test data. Under appropriate assumptions, this methodology will
generate test data which will detect a particular class of errors in a
program, viz., "domain errors" as defined by Howden (9]. The proposed metho-
dology is also described in greater detail in Cohen and White [3] and in Cohen [4].

The goal of the testing process is limited to the successful detection of

2
a program error if any exists. Any attempt to identify the error, its cause,
or an appropriate correction is properly categorized as debugging, and is
beyond the scope of our goal in the testing process. Thus testing is essen-
tially error detection, while debugging is the more difficult process of
error correction. Of course, in practice these two activities usually
overlap and are frequently combined into a single testing/debugging phase in
the software development cycle.

An {mportant assumption {n our work i{s that the user (or an “eragle")
is available who can decide unequivocally if the output is correct for the
specific input processed. The oracle decides only 1if the output values
are correct, and not whether they are computed correctly. If they are
incorrect, the oracle does not provide any information about the error
and does not give the correct output values.

The organization of the report is as follows. In Chapter 2, some
preliminary concepts are defined and discussed. Some assumptions must
be made concerning the language i{n which the given computer program {s
vritten, and the ramifications of certain language constructs are explored.
The important concepts of program path and path pryedicates, together
with domains, are defined and characterized. The case of linear
predicates is given particular emphasis, since, in that situation, the
domains assume the simple form of convex polyhedra in the input space.

Logical errors in a computer program can be viewed as belonging to
one of two classes of errors, viz., "domain errors" and "computation
errors”. Informally, a iomain error occurs when a specific input follows
the wrong path due to an error ! the control flow of the program. A path
contains a computation error when a specific input follows the correct

path, but an error in some assignment statement causes the wrong function

to be computed for one or more of the output variables.

PP T————

r

The third chapter rigorously defines these error classes, and explores
the ways in which they might arise. The proposed methodology, called the

domain strategy, is designed specifically to detect domain errors. In this

chapter, we will discuss two fundamental limitations inherent to any finite test

strategy. Once such limitation might be termed coincidental correctness.

This occurs when the computation for a specific test point is incorrect, but
the output value happens to coincide with the correct value. This test point
would then be of no assistance in the detection of the domain error which
caused the change in control flow. Another inherent testing limitation has

been identified by Howden [9], and might be called a missing path error, in

wvhich a required predicate does not appear in the given program to be tested.
This could result in a situation where no testing strategy can systematically

determine that such a predicate should be present.

The domain strategy is examined in Chapters 4 ana 5. 7This strategy 1is

developed by utilizing the structure of the input space corresponding to the
program. More specifically, the control flow partitions the input space into

a set of mutually exclusive domains. Each domain corresponds to a particular
path in the program in the sense that the set of input data points in that
domain will cause the corresponding path to be executed. The strategy proposed
is path-oriented; in testing a particular path, we are acutally testing the

computations performed by the program over a specific input space domain.

Given a particular path, the form of the boundary of the corresponding
domain {s completely determined by the predicates in the control statements
encountered in the path. Thus, an error in such a predicate will be

reflected as a shift in the boundary of the corresponding domain. The

4

testing strategy to be described tests a path for domain errors, i.e., detects
domain boundary shifts by observing the output values for a finite number of
test data having a prescribed geometrical relationship to the entire domain

and its boundary. These output values are computed by executing the
sequence of assignment statements constituting the path. The method requires

no information other than the successfully compiled program for selecting
effective test data. Thus the problem has been converted from its usual form as
an informal study of programs and programming to a more formal investigation

of the geometry of input space domains.

The strategy is initially described for the case of linear predicates
and a two-dimensional input space. For the linear case, it is shown that,
under appropriate assumptions, the number of test points to reliably test a
domain grows only linearly with the number of predicates along the path and
with the dimensionality. The techniques are then extended to N dimensions,
and various other extensions are considered, including nonlinear predicates.

A domain boundary error analysis is presented in Chapter 6, which {is helpful
in choosing the best locations for test points. The application ¢f the domain
strategy in discrete spaces is analyzed to study the effect of roundoff error
i{n selecting test points.

In the concluding Chapter 7 a number of open questions generated by this
investigation are presented, and the prospects for the practical application

of the domain testing strategy are evaluated.

'-""""-""'F--l!'-'”""-'-"'-“".l-ﬂlll--'-lﬂlll.!

CHAPTER 2

BACKGROUND AND PRELIMINARIES

2.1 Programming Language Assumptions

In order to investigate domain errors, we need to consider the language
in which programs will be written. The control structures should be simple

and concise, and should resemble those available in most procedure-oriented

languages. For simplicity we assume a single real-valued data type, and this

é is converted to integer values for use as DO-loop indices. Because this

is a path-oriented approach, no extra control flow probiems are introduced by
block structure. Thus no provision {s made for block structure,as it would

b T only add extra bookkeeping to keep track of local variables and block

invocation or exit.

A number of programming language features are assumed not to occur in the
programs we are to analyze for domain errors. The first feature is that of
arrays; despite the fact that arrays commonly occur in programs, a predicate
which refers to an element of an inpat array can cause major complications
(Ramamoorthy [11]). A second class of language features which will be excluded
in our analysis is that of subroutines and functions. The problems of side
effects and of parameter passing pose difficulties for domain testing. The
third class of features which are not currently analyzed by domain testing
include nonnumerical data types such as character data and pointers. These
are admittedly very important features, and further research is needed to

investigate whether these features pose any fundamental limitations to the

Jomain testing strategy.
Since input/output processing is so closeiy linked to a machine or compiler

environment, we will assume that all I/0 errors have previously been eliminated.

Thus only the most elementary I/O capabilities are provided; input is provided

by a simple READ statement, and output is accomplished with a simple WRITE

statement.

6

The types of control flow constructs investigated in this research include
sequence, Aalternation, and iteration control. Since the analysis is path-
oriented, GO-TO statements could be included without adversely affecting any
results, except that program paths could become quite complex.

All computation {s accomplished by means of arithmetic assignment state-
ments which also provide the basic sequential flow of control. In each
statement a single variable is assigned a value. The right hand side of an
assignment statement i{s an arithmetic expression using variables, constants,
and a set of basic arithmetic operators (+, -, *, /).

The general predicate form used for control flow is a Boolean combination
of arithmetic relational expressions. The logical operators OR and AND are
used to form these Boolean combinations. Each arithmetic relational expression
contains a relational operator from the set (<, >, =, <, >, #). These operators
form a complete set, and thus the logical operator NOT is unnecessary. If a
predicate consists of two or more relational expressions with Boolean operators,

then it is a compound predicate. A simple predicate consists of just a single

relational expression.

The alternation type of control flow {s achieved by using the IF-THEN-
ELSE-ENDIF construct. The conditional associated with the IF statement is a
general predicate. Any well-formed program segment, including the null program
segment, can be used in the THEN and FLSE portions of the IF construct. The
ENDIF statement is just a delimiter for the IF construct, which clarifies
the nesting structure and eliminates any potentially ambiguous ELSE clause.

A general iteration construct {s included which consists of a DO
statement, loop body, and ENDDO delimiter. The DO statement can be in one of
three éor-.:

1) DO I = INIT, FINAL, INCR;
2) DO WHILE (general predicate);

3) DO I = INIT, FINAL, INCR WHILE (general predicate).

S—

7
The loop body can be any well-formed program segment, and the ENDDO is Just a

delimiter to clarify the scope of the {teration.

The variables used in a program are divided into three classes. If a variable

appears in a READ or WRITE statement, it is classified as an input or output

variable respectively; all other variables are called program variables.
In order to produce a clear delineation between the three types of variables,

we assume that a given variable belongs to only one of the above three classes.

2.2 Program Paths and Path Predicates

A program can be represented as a directed graph G = (V,A), wvhere V is

a set of nodes and A is the set of arcs or directed edges between nodes. In

the language discussed in Section 2.1, we have defined a set of basic prograr

elements which consists of a READ, WRITE, assignment, IF, and DO statement,

together with the ENDIF and ENDDO delimiters. The directed graph representation

of a program will contain a node for each occurrence of a basic program element,
o and an arc for each possible flow of control between these elements. While THEN

and ELSE statements do not explicitly appear in the digraph, the actions

associated with them will be represented as nodes in the digraph.

A valk in a digraph is defined as an alternating sequenc: ! nodes and

A e
arcs (vl. AIZ. vz. A23...... Ak-l.k. vk) such that each arc 1,141 is directed irom
node vy to node Viel® A control path is then defined to be a walk in the directed

graph beginning with the node for the initial statement and terminating with the

ncde for the final statement. It should be noted that two walks which differ

only in the number of times a particular loop in the program is executed
will be defined as two distinct control paths. Thus the number of control paths
in a program can be infinite.

Every branch point of the program is associated with a general predicate.
This predicate evaluates to true or false, and its value determines which outcome
of the branch will be followed. A predicate is generated each time control

reaches an IF or DO statement in the given language. The path condition is the

compound condition which must be satisfied by the input data point in order for the

control path to be executed. It is the conjunction of the individual predicate

|
conditions which are generated at each branch point along the control path.]
Not all the control paths that exist syntactically within the program are 3

executable. If input data exist which satisfy the path condition, the control

path is also an execution path and can be used in testing the program. If the

path condition is not satisfied by any input value, the path is said to be

infeasible, and {s of no use in testing the program.
A simple predicate is said to be linear in variables Vl. Vz. Vn
if it 1is of the form
Alv1 + AZVZ . T An‘n ROP K,

where K and the At are constants, and ROP represents one of the relational
operators (-.'.-.L.:.ﬁ). A compound predicate is linear when each of {its
component simple predicates i{s linear.

In general, predicates can be expressed in terms of both program variables
and input variables. However, in generating input data to satisfy the path

condition we must work with constraints in terms of only input variables.

If we replace each program variable appearing in the predicate by its symbolic

value in terms of input variables, we get an equivalent constraint which we

call the predicate interpretation. A particular interpretation i{s equivalent

to the original predicate in that input varfable values satisfying the inter-

pretation will lead to the computation of program variables which also satisfy r

the original predicate. A single predicate can have many different interpre-
tations depending upon which path is selected, for each path will in general
consist of a different sequence of assignment statements. The following

program segment provides example predicates and interpretations.

READ A,B;
IFA>B
THEN C = B + 1;
ELSEC =B - 1;
ENDIF;
D = 2%A + B;
IFC<O
THEN E = 0;
ELSE
DO I = 1,B;
E=E + 24];
ENDDO;
ENDIF;
IFD=2
THEN F = E + A;
ELSE F = E - A;
ENDIF;

WRITE F;

In the first predicate, A > B, both A and B are input variables, so there
is only one interpretation. The second predicate, C < 0, will have two
interpretations depending on which branch was taken in the first IF construct.
For paths on which the THEN C = B + 1 clause 1s executed the interpretation {is
B+1<0 or equivalently B < -1. When the ELSE C = B - 1 branch
is taken, the interpretation is B - 1 < 0, or equivalently B < 1. Within
the second IF-THEN-ELSE clause, a nested DO-loop appears. The DO-loop is
executed:

no times if B < 1
once {f 1 < B < 2
twice 1f 2 < B < 3
etc.

Thus the selection of a path will require a specification of the number of times
that the DO-loop is executed, and a corresponding predicate is applied which
selects those input points which will follow that particular path. Even though
the third predicate, D = 2, appears on four different paths, it only has one
interpretation, 2*A + B = 2, since D is assigned the value 2*A + B 1in the

same statement in each of the four paths.

10

2.3 lmportance of Linear Predicates

The domain testing strategy becomes particularly attractive from a
practical point of view {f the predicates are assumed to be linear in input
variables. It might seem to be an undue limitation to require that predicate
interpretations be linear for the proposed strategy. In fact, however, as the |
following discussion shows, this represents no real limitation for many .
important applications.

¢ A number of authors have provided data to show that simple programming |
language constructs are used more often than complex constructs. Knuth [10]
studied a random sample of FORTRAN programs and found that 862 of all assign-

ment statements were of the forms

1 s
vy =V, +V,,
or Vy =V, -V,

Also 70T of all DO loops in the programs contained less than four statements.
Elshoff [5,6] studied 120 production PL/I programs and showed similar results,
{ncluding the fact that 97% of all arithmetic operators are + or -, and 98%
of all expressions contain fewer than two operators.

An experiment of particular relevance to the present context i{s reported
{n Cohen (4] using typical data processing programs, since program functions
and programming practice tend to be reasonably uniform in this area. A random
sample of 50 COBOL programs was taken directly from production data processing
applications for this study. In this static analysis each predicate is
classified according to whether it {s linear or nonlinear, and the number of
{nput variables used {n the prcdicnt; has also been recorded. In addition, the
number of input-independent predicates were tabulated, since these predicates
do not produce any input constraints. The number of equality predicates {s
also reported since these predicates are very beneficial in reducing the number

of test points required for a domain. These data are summarized in Table I.

it et e

11

TOTAL AVG. RANGE
Total Lines 12,628 253 31-1,287
Procedure Division Lines 8,139 163 13-822
Total Predicates 1,225 25 0-115
Linear Predicates 1,070 21 0-104
Nonlinear Predicates 1 0.02 0-1
Input-Independent Predicates 154 3 0-28
Predicates with 1 Variable 945 19 0-97
Predicates with 2 Variables 125 i 0-20
Equality Predicates 779 15.5 0-76

TABLE I Predicate Statistics for 50 COBOL Programs

12 E

The most important result is that only one predicate out of the 1225
tabulated in the study can possibly be a nonlinear predicate. The predicates
are also very simple since most of them refer to only one input variable, and i
no predicate {n this sample uses more than two input variables. - i

In conclusion, while this study by no means represents an exhaustive |
survey, we believe the sample is large enough to indicate that nonlinear
predicate interpretations are rarely encountered in data processing applications.
It 1s clear that any testing strategy restricted to linear predicates is still

viable in many areas of programming practtce.

[=]

.4 Ioput Space Struceure

A program which has N {nput variables and produces M output variables

e i i e Yt

computes a function which maps points {n the N-dimensional input space to
points in the M-dimensional output space. The input space is partitioned into
a set of domains. Each domain corresponds to a particular executable path in
the program and consists of the input data points which cause the path to be

A executed. More formally, an input space domain is defined as a set of input

data points satisfying a path condition, consisting of a conjunction of predi-
cates along the path., In this diicussion. these predicates are assumed to be
simple; compound predicates will be discussed later in Section 5.3.

We assume that the input space is bounded in each direction dy the
minimum and maximum values for the corresponding variable. These min-max
constraints do not appear in the program but are automatically appended to

each path condition. Since a single data type is used for all variables in

our language, each variable will have the same min-max constraints.
The boundary of each domain {s determined by the predicates in the path

condition and consists of border segments, where each segment is the section of

the boundary determined by a single simple predicate in the path condition.

Each border segment can be open or closed depending on the relational operator

13

in the predicate. A closed border segment is actually part of the domain and

is formed by predicates with <, >, or = operators. An open border segment forms
part of the domain boundary but does not constitute part of the domain, and
is formed by <, >, and ¥ predicates. We shall find it convenient to use thc

term border operator to refer to the relational operator for the corresponding

predicate.

Since border segments in the input space are determined by the particular
predicate interpretations on the path, the form of the segment may be different
from that of the original predicate. For example, with input variables A and B,
the linear predicate A<C + 2 can lead to a nonlinear border segment, A< B*B + 2,
vhen C = B*B. Similarly, a nonlinear predicate, C > A*A + B, will produce
a linear border segment, A > B, when C = A*A + A. Since a predicate can appear
on many paths and each path can execute a different sequence of assignment
statements for the variables used in the predicate, a single predicate can have
many different interpretations and can form many d(ncontinuébp border segments

G

for various domains.

The total number of predicates on the path is only an upper bound on
the number of border segments in the domain boundary since certain predicates
in the path condition may not actually produce border segments. An input-

independent predicate interpretation is one which reduces to a relation between

constants, and since it is either true or false regardless of the input values,

it does not further constrain the domain. A redundant predicate interpretation

is one which 1is superceded by the other predicate interpretations, i.e., the
domain can be defined bya strict subset of the predicate interpretations for
that path.

The general form of a simple linear predicate interpretation is

Al Xl + A2 Xz L TP A“ Xn ROP K

e

14

where ROP is the relational operator, X are input variables, and

i

A‘. K are constants. However, the border segment which any of
these predicates defines is a section of the surface defined by the equality
Al x1 + Az x2 ST An xn = K,

since this is the limiting condition for the points satisfying the predicate.
In an N-dimensional space this linear equality defines a hyperplane which is
the N-dimensional generalization of a plane.

Consider a path condition composed of a conjunction of simple predicates.
These predicates can be of three basic types: equalities (=), inequalities (<,
>, <, >), and nonequalities (#). The use of each of the three types results in a

markedly different effect on the domain boundary. Each equality constrains the domain
to lie in a particular hyperplane, thus reducing the dimensionality of the

domain by one. The set of inequality constraints then defines a region within

the lover dimensional space defined by the equality predicates.

The nonequality linear constraints define hyperplanes which are not part
of the domain, giving rise to open border segments as mentioned earlier. Observe
that the constraint A ¢ B is equivalent to the compound predicate (A <B) OR
(A>B). In this form it is clear that the addition of a nonequality predicate
to a set of inequalities can split the domain defined by those inequalities into
two regions.

The following example should clarify the concepts discussed above,

READ I.J;
C=1+ 2% - 1;

(P1) IFC> 6

(P2) IFD=C+ 2

(P)) IFE<D- 2%
THEN F = I;
ELSE F = J;

15

Figure 1 shows the corresponding input space partitioning structure for
this program. The input space is in terms of inputs I and J, and {s arbitrarily
constrained by the following min-max conditions:

-3 <1<, -2<J <6,
Each border in Figure 1 is labelled with the corresponding predicate, and each
domain is labelled with the corresponding path. The path notation is based
upon wvhich branch (T or E) is taken in each of the three IF constructs, e.g., TEE.
The first predicate P1, C > 6, will be interpreted as I + 2*J > 7 since

C=1+ 2% - 1. This single interpretation Pl is seen in Figure 1 as a single

continuous border segment across the entire input space. The second predicate
P2 demonstrates the effects of both equality and nonequality predicates. Domains

for paths through the THEN branch are constrained by the equality, and this

reduction in dimensionality is seen in the fact that these domains consist of

the points on the solid line segments ETT and TTT. Paths through the ELSE
branch are constrained by a nonequality predicate, and the corresponding domains
consist of the two regions on either side of the solid line segments (e.g., EEE).
This predicate has two interpretations depending upon the value assigned to D
and produces two discontinuous border segments ETT and TTT.

The third predicate P3 might have four different interpretations, but
only one border segment appears in the diagram. The other three interpretations
do not produce borders since they are either redundant, input-independent, or
correspond to infeasible paths. With three IF constructs we have eight control
paths, but the diagram contains only five domains since three of the paths are
infeasible. Also many of these domains have fewer than three border segments
because of redundant and input-independent interpretations. From this example we
can conclude that the input space partitioning structure of a program with many

predicates and a larger dimensional input space can be extremely complicated.

16

6
‘32_\\ | | F 1 1
T
S 0 _4

FIGURE 1 Input Space Partitioning Structure

17

The foregoing definitions and the example allow us to characterize more
precisely domains which correspond to simple linear predicate interpretations.
For a formal statement of the characterization, we need the following definitions.
A set is convex, if for any two points in the set, the line segment joining

these points is also in the set. A convex polyhedron is the set produced by the

intersection of the set of points satisfying a finite number of linear equalities and

inequalicies.

Proposition 1

For an execution path with a set of simple linear equality or inequality
predicate interpretations, the input space domain is a single convex polyhedron.
If one or more simple linear nonequality predicate interpretationsare added to
this set, then the input space domain consists of the union of a set of disjoint

convex polyhedra.

18
CHAPTER 3

ERROR CLASSIFICATION AND THEORETICAL LIMITATIONS
3.1 De f of Error
The basic ideas behind the classification of errors that we use are due to
Howden (9], but our approach to defining them is somewhat more operational
than that given in his paper.
From the previous sections, it is clear that a program can be viewed as

1) o 2tablishing an exhaustive partition of the input space

into mutually exclusive domains each of which corresponds

to an executable path, and S gt
2) specifying, for each domain, a set of assignment statements
which constitute the domain computation.

Thus we have a canonical representation of a program, which is a (possibly

infinite) set of pairs {(Dl;fl)'(DZ;fz)' - (Di;fi)"')' where D1 is the i-th

domain, and f1 is the corresponding domain computation function.

Given an incorrect program P, let us consider the changes in its
canonical representation as a result of modifications performed on P. It is
assumed that these modifications are made using only permissible language
constructs and results in a legal program.

Definition: A domain boundary modification occurs if the modification

results in a change in the Di component of some (Di;fi) pair in the canonical

‘representation.

Definition: A domain computation modification occurs if the modification

results in a change in the f,6 component of some (Dl;fi) pair in the canonical

i

b r——

representation.

:
|
|
!

19

Definition: A missing path modification occurs if the modification results in
the creation of a new (Dt;fl) pair such that D1 is a subset of Dj occurring in some
pair (Dj;tj) in the canonical representation of P, and fj differs from fi'
Notice that a particular modification (say a change of some assignment

statement) can be a modification of more than one type. In particular, a

missing path modification is also a domain boundary modification.

The errors that occur in a program can be classified on the basis of the
modifications needed to obtain a correct program and consequent changes in the
canonical representation. In general, there will be many correct programs, and
multiple ways to get a particular correct program. Hence, the error classifi-
cation is not unique, but relative to the particular correct program that
would result from the series of modifications.

Definition: An incorrect program P can be viewed as having a domain error

*
(computational error) (missing path error) if a correct program P can be

created by a sequence of modifications at least one of which is a domain
boundary modification (domain computation modification) (missing path
modification).

Several remarks are in order. The éperationnl consequence of the phrase

"can be viewed as" in the above definition is that the error classification

is relative not only to a.particular correct program, but also to a particular
sequence of modifications. For instance, consider an error in a predicate
interpretation such that an incorrect relational operator {s employed, ¢.g., use

of > instead of <. This could be viewed as a domain error, leading to a
modification of the predicate, or as a computation error, leading to a modification
of the functions computed on the two branches. The fact that it might be

more profitable to change the relational operator rather than the function

computations {s a consequence of the language constructs, and is not directly

e

3

o2

20

captured {n the definitions of the typ?s of error. In this paper we would
regard an error due to an incorrect relational operator as a domain error;
it is a simpler modification to change the relational operator in the predicate
than to interchange the set of assignment statements.

More specific characterizations of these errors can be made in the context
of the specific programming language which we have introduced. In particular,

the following informal description directly relates the domain and missing

path errors to the predicate constructs allowed in the language.

A path contains a domain error {f an error in some predicate interpre-
tation causes a border segment to be '"shifted'" from its correct position or
to have an incorrect border operator, A domain error can be caused by an
incorrectly specified predicate or by an incorrect assignment statement which
affects a variable used in the predicate. An incorrect predicate or
assignment statement may affect many predicate interpretations and conse-
quently cause more than one border to be in error.

A path contains a missing path error when a predicate is missing which
would subdivide the domain and create a new execution path for one of the
subdomains. This type of error occurs when some special condition requiring

different processing is omitted.

Fundamental Limitations

Finite testing strategies are fundamentally limited by their inability

to detect phenomena occuring in regions which have zero volume or measure

relative to the input space or domain. The first of these limitations we shall

define as coincidental correctness. In testing each domain for the

correctness of its boundaries, if the output for a test case is correct, it

21

could be either that the test point was in the correct domain, or that it was
in a wrong domain but the computation in that domain coincidentally yielded
a correct value for the test point. Similarly, a domain computation could
correspond to an incorrect function, but its output may coincide with the
correct value for a particular test point. To be absolutely certain that the values
are not coincidentally correct, it would be necessary to exhaustively test all
the points of the domain.
The essence of the coincidental correctness problem is the same as

that of the problem of deciding if two arbitrary computations are

equivalent; the latter problem is known to be generally undecidable. However, {
in practice, the severity of the problem is related to the probability that
for an arbitrary point this coincidence would occur. 1If the set of points

for which the two functions have the same value is of measure zero, then this

probability is zero, even though coincidental correctness is still possible.
So, even with coincidental correctness as a possibility, a testing strategy

can be almost reliable 1in the sense of Howden [9], {f it would be reliable

in the absence of coincidental correctness, and the set of points which are
coincidentally correct has zero volume relative to the domain being tested.
4 Another basic limitation relates to missing path errors. When the
subdomain associated with a missing path is a region of lower dimensionality

than the original domain, a missing path error of reduced dimensionality

occurs. This typically happens when the missing predicate is an equality. If

all that is available is just the (incorrect) program to be tested, then the
pfobabillty that a finite set of test points would detect the missing predicate
is zero, since the volume of the subdomain is zero relative to that of the

original domain.

22
The proposed approach is capable of detecting many kinds of nissing path
errors, but for some of them the number of'required test points is inordinate.
Hence, in the next section, where we describe the testing strategy, we will

simply assume that no missing path errors are associated with the path being

tested.

"“""-'-'-'lllllllllll!lllllllll-lﬂI!lll'll'HIIlllIllillllllllllll'|

CHAPTER 4 23

THE DOMAIN TESTING STRATEGY

The domain testing strategy is designed to detect domain errors and will
be effective in detecting errors in any type of domain border under certain
conditions. Test points are generated for each border segment which, if
processed correctly, determine that both the relational operator and the
position of the border are correct. An error in the border operator
occurs when ag incorrect relational operator is used in the corresponding ‘
predicate, and an error in the position of the border occurs when one or more
incorrect coefficients are computed for the particular predicate interpretation.
The strategy is based on a geometrical analysis of the domain boundary and
takes advantage of the fact that points on or near the border are most

sensitive to domain errors. A nuaber of authors havc made this observation,

e.g3., Boyver et al. [1]) and Clarke [2).

As stated in Proposition 1, a domain defined by simple linear predicates
i{s a convex polyhedron, and each point can be classified according to its
position within the domain. An interior point {s defined as one which is
surrounded by an t-neighborhood containing only points in the domain.

Similarly, a boundary point is one for which every c-neighborhood contains

both points in the domain and points lying outside of the domain. Finally,

an extreme point is a boundary point which does not lie between any two H

distinct points in the domain,

In the previous section, a comparison was made between the piven program and a
corresponding correct program; indeed domain errors were defined in terms
of this correspondence. It should be emphasized that the domain strategy

does not require that the correct program be given for the selection of test

points, since only information obtained from the given program is needed.
However, it will be convenient to be able to refer to a "correct border",
although it will not be necessary to have any knowledge about this border.
Define the given border as that corresponding to the predicate interpretation

for the given program being tested, and the correct border as that border

which vould be calculated in somc correct progran.
The donmain testing strategy is first developed, explained, and validated

in detail under a set of simplifying assumptions:

1} Coincidental correctness does not occur for any test case. If
correct output results are produced, we can assume that the test
point is {n the correct domain rather than being coincidentally
correct in another domain.

2) A missing path error {s not associated with the path being tested.
Missing path errors of reduced dimensionality pose a theoretical
limitation to the relifability of any program testing methodology.

3) Each border {s produced by a simple predicate.

4) The path corresponding to each adjacent domain computes a different
function than the path being tested.

5) The given border is linear, and {f {t {s incorrect, the correct
border {s also linear.

6) The input space is continuous rather than discrete.

7) Each border is produced by an inequality predicate.

8) The input space {s two-dimensional, corresponding to a program which

reads at most two {input variables.

The f{ret two assumptions were thoroughly explored {n the previous section.

25

Assumptions 3) through 8) are for convenience in the initial exposition, and
we shall (nvestigate later the conditions under which each can be relaxed. Also,

references (3] and (4] discuss both the domain strategy and these assumpt {ons

in greater detail.

The Twe-Dimensional Linear Case

Given assumptions 1) - 8), a set of test points is first defined for
detecting border shifts, and then we shall show that this set of points also
detects all possible relational operator errors. Since the present analysis
is limited to linear borders in a two-dimensional input space, each border is
a line segment. Therefore, the correct border can be determined if we know

two points on that border.

The test cases selected will be of two types, defined by their position
with respect to the given border. An ON test point lies on the given border,
while an OFF test point i{s a small distance ¢ from 6 and lies on the open
side of, the given border. Therefore, we observe that when testing a closed
border, the ON test points are in the domain being tested, and each OFF test
point is {n some adjacent domain. Conversely, when testing an open border,
each ON test point is in some adjacent domain, while the OFF test points are
in the domain being tested.

Figure 2 shows the selection of three test points A, B, and C for a
closed inequality border segment. In this and subsequent figures the small
arrows are used to indicate the domain which contains the border segment. The
three points must be selected in an ON-OFF-ON sequence. Specifically, {f
test point C is projected down on line AB, then the projected point must
lie strictly between A and B on this line segment. Also point C is selected
a distance ¢ from the given border segment, and will be chosen so that it
satisfies all the inequalities defining domain D except for the inequality

being tested.

Domain D

Given Border —m——
Correct Border ===-—-

FIGURE 2 Test Points for a Two-Dimensional Linear Border

T——S

27

It must be shown that test points selected in this way will reliably 1
detect domain errors due to boundary shifts. If any of the test points lead
to an incorrect output, then clearly there is an error. On the other hand,
1f the outputs of all these points are correct, then either the given border
is correct or we have gained considerable information as to the location of a
correct berder. Figure 2 shows that the correct border must lie on or above
points A and B, and must lie below point C, for by assumptions (1) and (4),
each of these test points must lie in its assumed domain. So if the given
border is tncorrect, the correct border can only belong to a class of line

segments which intersect both closed line segments AC and BC.

Figure 2 indicates a specific correct border from this class which
intersects line segments AC and BC at P and Q respectively. Define the

domain error magnitude for this correct border to be the maximum of the distances

from P and from Q to the given border. Then it is clear that the chosen

test points have detected domain errors due to border shifts except for a

class of domain errors of magnitude less than ¢. In a continuous space ¢

can be chosen arbitrarily small, and as ¢ approaches zero, the line segments

AC and BC become arbitrarily close to the given border, and in the limit, we
can conclude that the given border i{s identical to the correct border. However,
the continuity of the space also implies that regardless of how small ¢ {s
chosen, border shifts of magnitude less than ¢ may not be detected, and there-

fore we must correspondingly qualify our results.

Figure 3 shows the three general types of border shifts, and will
allow us to see how the ON-OFF-ON sequence of test points works in each
case. In Figure 3(a), the border shift has effectively reduced domain Dl'
Test points A and B yield correct outputs, for they remain in the correct

domain D1 despite the shifted border. However, the border has shifted past

T

// 7% s

(c)

Given Border
Correct Border ===—=—-—

t . — - 7

FIGURE 3 The Three Types of Border Shifts

29

test point C, causing it to be in domain DZ instead of domain Dl‘ Since
the program will now follow the wrong path when executing input C,

incorrect results will be produced. In Figure 3(b), the domain D, has

1
been enlarged due to the border shift. Here test point C will be processed
correctly since it is still in domain DZ' but both A and B will detect the
shift since they should also be in domain DZ’ Finally in Figure 3(c),

only test point B will be incorrect since the border shift causes it to be
in D1 instead of Dz. Therefore, the ON-OFF-ON sequence is effective since

at least one of the three points must be in the wrong domain as long as the

border shift is of a magnitude greater than €.

Recall in Figure 2 that we required the OFF point C to satisfy all
the inequalities defining domain D except for the inequality being tested.
The reason for this requirement is that some correct border segment may
terminate on the extension of an adjacent border, rather than intersecting
both line segements AC and BC as we have argued. Since we have assumed a

continuous space, C could always be chosen closer to the given border in

order to satisfy the adjacent border inequalitfes. An analysis of this s{tua-

tion will be presented in Section 6.2.

We must also demonstrate the reliability of the method for domain errors
in which the predicate operator is incorrect. If the direction of the
inequality is wrong, e.g., < is used instead of >, the domains on either side
of the border are interchanged, and any point in either domain will detect

the error. A more subtle error occurs when just the border itself is in

the wrong domain, e.g., < is used instead of <. In this case the only points
affected lie on the border, and since we always test ON points, this type of
error will always be detected. If the correct predicate is an equality, the

OFF point will detect the error.

30

The domain testing strategy requires at most 3*P test points for a
domain, where P, the number of border segments on this boundary, is bounded
by the number of predicates encountered on the path. However, we can
reduce this cost by sharing test points between adjacent borders of the
domain. The requirement for sharing an ON point is that it is an extreme
point for two adjacent borders which are both closed or both open. In the
example in Figure 4, the points that can be shared are Al' Az. and A3. The
number of ON points needed to test the entire domain boundary can be reduced
by as much as one half, i.e., the number of test points, TP, required to
test the complete domain boundary lies in the following range:

QAP L TR S IR,

Even more significant savings are possible by sharing the test points
for a common border between two adjacent domains. If both domains are
tested independently, the common border between them is tested twice, using
a total of six test points. If this border has shifted, both domains must
be affected, and the error will be detected by testing either domain.
Therefore, the second set of test points can safely be omitted. However,
the cost savings in such sharing should be balanced against the additional
processing required.

We now formally summarize the results of this section in the following

proposition.

Proposition 2

Given assumptions (1) through (8), with the OFF test point chosen a

distance ¢ from the corresponding border, the domain testing strategy is

guaranteed to detect all domain errors of magnitude greater than ¢. More-
over, the cost is no more than 3*P test points per domain, where P is the

number of predicates along the corresponding path.

As

FIGURE 4 Domain Test Points for Closed and Open Borders

T T T Ty

32

~

4.2 N-Dimensional Linear Inequalities

The domain testing strategy developed for the two-dimensional case can
be extended to the general N-dimensional case i{n a straightforward manner.
The central property used in the previous analysis was the fact that a
line is uniquely determined by two points. We can easily generalize this
property since an N-dimensional hyperplane is determined by N linearly)

independent points. So, whereas in the two-dimensional case we had to

identify only two points on the correct border, in general wve have to identify
N points on the correct border, and in addition, these points must be guaranteed
to be linearly independent.

The validation of domain testing for the general linear case is based on
the same geometric arguments used in the two-dimensional case. The key to the
methodology 1s that the correct border must intersect every OFF-ON line segment,
assuming that the test points are all correct. Since we must {dentify a total
of N points on the correct border, we need N OFF-ON line segments, and we can
achieve this by testing N linearly independent ON test points on the given
border and a single OFF test point whose projection on the given border is a “
convex combination of these N points. In addition, as in the two-dimensional 9
case, the OFF point must also satisfy the inequality constraints corresponding
to all adjacent borders.

Even though we do not know these specific points at which the correct border

intersects the ON-OFF segments, we do know that these points must be linearly #
independent since the ON points are linearly independent. The OFF point is

a distance ¢ from the given border, and in the limit as ¢ approaches zero, T

each OFF-ON line segment becomes arbitrarily close to the given border.
However, as in the two-dimensional case, the c-limitation means that only

border shifts of magnitude greater thane¢ will be detected.

33

The domain testing strategy requires at most (N+1)*P test points per u
domain, where N is the dimensionality of the input space in which the domain
is defined and P is the number of border segments in the boundary of the
specific domain. However, we again can reduce this testing cost by using
extreme points as ON test points. Each extreme point is formed by the

intersection of at least N border segments, and therefore one point can be

used to test up to N borders. In addition, extreme points are also linearly
independent. Each border must be tested by N ON points, and any points §
beyond this are redundant, and so nbt all extreme points on each border are
required. As a result of this kind of sharing, the number of test points can
be as few as 2*P. As in the two-dimensional case, there can be further
savings if test points are shared between adjacent domains. Finally, since
some of the P border segments may be produced by the min-max constraints which
define the bounds of the input space, the number of test points can be
reduced still further, {f we can assume that these constraints 2re prede-
termined and need not be tested.

This generalization to N dimensions 1s significant since very few
nontrivial programs have only two input variables. We summarize the results

so far in the following proposition:

Proposition 3

Given assumptions (1) - (7), with the OFF test point chosen a distance ¢
from the corresponding border, the domain testing strategy is guaranteed to
detect all domain errors of magnitude greater than ¢ regardless of the dimen-
sionality of the input space. Moreover, the cost is not more than (N+1)*P

test points per domain.

34

Equality and Nonequality Predicates

Equality predicates constrain the domain to lie in a lower dimensional
space. If we have an N-dimensional input space and the domain is constrained
by L independent equalities, the remaining inequality and nonequality
predicates then define the domain within the (N-L)~dimensional subspace
defined by the set of equality predicates.

In Figure 5 we see the equality border and the proposed set of test points.
In a general N-dimensional domain, let us first consider a total of N ON
points on the border and two OFF points, one on either side of the border.

As before, the ON points must be independent, and the projection of each OFF
point on the border must be a convex combination of the ON points. 1
Given an incorrect equality predicate, the error could be either in the

relational operator or in the position of the border or both. The proposed

set of test points can be shown to detect an operator error or a position
error by arguments analogous to those previously given. This set of points
is also adequate for almost all combinations of operator and position errors,
except for the following pathological possibility. Let us assume that the
border has shifted and the correct predicate is a nonequality. If both OFF
points happen to lie on the correct border while none of the ON points

belong to this border, the error would go undetected. This singular
situation is diagrammed as the dashed border in Figure 6, where Al and A2 are

the ON points, and C1 and C2 are the OFF points. This problem can be solved

by testing one additional point selected so that it lies both on the given
border and the correct border for this case, f.e., at the intersection point
of thegiven border with the line segment connecting the two OFF points.
This additional point is denoted by B in the figure.

Each equality predicate can thus be completely tested using a total of

(N+3) test points. By sharing test points between all the equalitypredicates,

FIGURE 5 Test Points for an Equality Border

Given Border —_—
Correct Border ====—-—

FIGURE 6 A Pathological Case in Domain Testing for an Equality Predicate

36

this number can be considerably reduced, but the reduction depends upon
values of N and L. In addition, since testing the equality predicates
reduces the effective dimensionality to (N-L) for each of the inequality and
nonequality borders, and the equalityON test points can be shared, even
further reductions are possible.

For the case of a nonequality border, the testing strategy is identical

to that of the equality border just discussed. The arguments for the

validity of the strategy are analogous to those in previous cases. Again in this

case, the pathological possibilié% discussed in connection with the
equality predicatecan occur, and can be handled in the same way. The major
difference is that while test points can be extensively shared between
equality and inequality borders, in general such sharing is not possible

between nonequality and inequality borders. The following proposition

summarizes the situation for testing linear borders in N-dimensions.

Proposition &4

Given assumptions (1) through (6), with each OFF point chosen a distance
¢ from the corresponding border, the domain testing strategy is guaranteed to
detect all domain errors of magnitude greater than ¢ using no more than

P*(N+3) test points per domain.

An Example of Error Detection Using the Domain Strategy

The domain testing strategy has been described and validated using some-
what complicated algebraic and geometric arguments. In this section we hope to
complement those discussions by demonstrating how a set of domain test points
for a short sample program actually detects specific examples of different
types of programming errors. In discussing each error we will focus on a
specific domain affected by the error, and a careful analysis of its effect on
the domain will allow us to identify those domain test points which detect the

error.

g
The short example program reads two values, I and J, and produces a single '

output value M. Therefore, the input space is two-dimensional, and the following

min-max constraints have been chosen so that the input space diagram would

not be too large or complicated.

-8 <I<8 -5 ¢ J< 3§,
In addition, since this is a two-dimensional space, we will also test extreme
points for the border segments produced by the min-max constraints in order to
be able to detect as many missing path errors as possible.

Even though the input space is assumed to be continuous, the coordinates
of each test point are specified to an accuracy of 0.2 in order to simplify the
diagrams and discussions. Of course, in an actual implementation each OFF
point would be chosen much closer to the border.

The sample program is listed below, and it consists of three simple
IF constructs, the first two of which are inequalities and the last of which
is an equality. The input space structure is diagrammed in Figure 7, where the

solid diagonal border across the entire space is produced by the first predicate,

the dashed horizontal border and short vertical border at I=0 are produced by the
second predicate, and the vertical equality border at I=5 corresponds to the
third predicate. In addition, domain test points have been indicated for the
two domains which we will discuss, viz., TTE aad ETT.
Statement
Nuaber
READ I1,J;
h ! 7 0 G 0 e B ¢
2 THEN K = I +J - 1}
3 ELSE K = 2*] + 1;
ENDIF;
4 K>3 #1
5 THEN L = I + 1;
6 ELSEL =J - 1;
ENDIF;
7 IFI =5
8 THEN M = 2*L + K;
9 ELSE M = L + 2*K - 1;
ENDIF;
WRITE M; |

ram

sjujod 1891 ujemo(2oedsg induy 7 FANO14

38

I
8 9 b 2 0 2- p- 9- 8-
T v T % ,
¥ -4 i
4 |
f .
|
L A.m —2- A
313 331 |
- —o I |
E.H.T\ A
S AP —— llllllxllllllllll.«ll.ﬂw |
311
- 311 v
X | |

39

Table II illustrates two types of errors we would like to comsider.
The first is an error in the inequality predicate in statement #4 of the
above program, (K > I+l), where it is assumed that the correct predicate should
be (K > I+2). This corresponds to an inequality border shift, and the modified
domain structure is shown in Figure 8. Three points have been selected to
test this border, and it can be seen in Table II that the two ON points detect
this error, where M and M' represent the output variables for the given program
and for the assumed correct program respectively. Note that as a result of
this error, the vertical border at I=0 in Figure 7 has also shifted to I=]l in
Figure 8, and if tested, would also reveal this error.

Table II also shows the effect of an error in an equality predicate in
statement #7 of the given program. It is assumed that the correct predicate
should be (I=5~J) rather than the (I=5) predicate which occurs in the given
program. Figure 9 shows the modified input space structure, and it can be seen
that equality borders TTT and ETT have shifted. Table II shows the five points
vhich test tbc ETT border, and note that two ON points both detect this shift.

Table III indicates that the domain strategy can also detect a compu-

tation error and a missing path error, even though we have previously noted

that reliability cannot be proven for these cases. The computation error
arises from statement #6 in the given program, where it is assumed that the
correct assignment statement for this ELSE clause is (L=I-2) instead of (L=J-~1)
which actually appears in the given program. Since L is not used in any sub-
sequent predicate, this corresponds to a computation error rather than a domain
error. Thus the input space structure in Figure 7 is applicable for both

the given and the correct programs. Table III shows the six test points which
have been chosen to test domain TEE wiiich (s affected by this computation error.
Four of the points should indicate the error, but note the test results at

(=4, -5) are coincidentally correct; the remaining three points detect the error.

10113 ujewoQq ¥ 10j @adedg Indu] 3021100 g AANOIL

40

<

I
17 O ¢- b-
T

—

T Tl g g R

311

A PO TR T

41

10113 33edfpaid A3yrenby ue 10j adeds Induj I102110) 6 FUNOIL

c- t- 9- 8

h——

Seisrisindind 0

331

i s e e ik e, b, e il |

or

893801 paiag L3yrenbz pue

A3yrenbauy 103 sio1i1z ujemoq jo uoj3IdNIAQ 11 ?19%1

.. y3ugod N
€2 14 (03] s
87 82 (0°2°SN s3uy0d
92 9z (0°‘8°%)) 440 oma
(6 2an8y4 29g)
o []
Lz €T (s-‘s NO oal A3y1endy)
r-g=1 (r-se1)d1 g=1 (S=1)41 (4 113
(8 2an8y3 29g)
8 14 (Z'e) NoO (e3ed
9'9- 9°%- (8°1'¢-) 440 -3poa4 Kayrenbauy)
2 z- (2'8-) No g<r (Z41N) 41 Z<r (T4IN) 4T 94 il
H R Jujoq jujoqd -
19piog SIY3l 103} uojielaadiajug JUIWIIVIS uotiwidadaajug 10113 uy 10113
sjujoq 31891 239d]paag 3172110) 3129110) pIunssy 3IVIIPI14d UIATH JUIWIIVIS UIATH uj ujemoq

R T T R Y R TR R TR S R N RNV RS2 gy

10113 yieg Buyssyu puw
10113 uojleindmo) v jJo uOFIDIIAQ 111 219%1 1

Zt zt (z'¢c)
2
12- 12- (z'8-)
z°'9- z°9- (°z-'1-)
9 9y~ 9°y- (8°1'ec-) [
Lt~ Lz- (s=‘%-)
1- sE- (s-‘8-) i
t410N3
1-r+1=X 3ST3 (o1 ®an833 995)
‘g=d NFHL (10113
(0%~ Ie§->Ce2)dl NARL yisg BuyssyR)
S(T-r+1=X)NAHL 24 aa
*3091100
A11e3uapyoujod 87 Jujod sFYl I3I0N &
zt zt ')
12- 12- (z's-)
o 0 ey _Sy_
9 z'9 (T-'1-) ((@anB34 99g)
%°01- 9 - (8 1'¢c-) (10113
Lz- LT- (5-‘9-)» uoj3wIndmo))
6€- SE- (s-‘8-) t(Z-1=1) 3514 ‘(1-r=1)3as1a 9¢ fa1
R 1] Jujog
ujvmoq SIY3l 103 JUIWIVIS 1D09110) pIWNSSY 10117 U} JUIWIIVIS UIATH 10113 Uy UpEEoqd
sjujod 31991

44
Suppose in program statement #2 the THEN clause is replaced by the

e

following code.

THEN IF 2%J < -5%1 - 40
THEN K = 3;
ELSEK=1I+J - 1;

ENDIF;

This corresponds to a missing path error and is indicated as such in Table III.

Figure 10 shows how the domain TEE is modified by this missing path error, but

s

[note that only test point (-8,-5) detects this error. If the < inequality in

the missing predicate had been an equality, this would have produced a missing |

path error of reduced dimensionality, corresponding to a domain consisting of

|
|
} Just the line segment in Figure 10, and would have gone undetected.

s

10113 Yieq Bupssjy ® 10j adeds Indu] 21221100 Q1 AUNOL4

-L----i--J O

Japiog
ysod buissiy

331

X

31l

s SRR P PP PR SR

5.1

46

CHAPTER 5

EXTENSIONS OF THE DOMAIN TESTING STRATEGY

Many assumptions were required in presenting the previous results, but
to some extent these assumptions were made to allow a simple exposition of the
domain testing strategy. This section will discuss assumptions (3), (4), and (5)
wvhich deal with compound predicates, adjacent domains which compute the same
function, and nonlinear borders, respectively. The treatment of these cases will
certainly require additional test points, and in some instances will demand extra
processing which may render this testing approach impractical. However, one of
the main objectives of this section is to {llustrate that none of the assumptions
(3), (4), or (5) pose a theoretical limitation to the domain testing strategy which

cannot be dealt with in some fashion.

The General Nonlinear Case

A finite domain testing strategy cannot be effective for the universal class
of nonlinear borders, but we must determine whether this is caused by some funda-
mental difference between linear and nonlinear functions. If the problem is that
we are considering too general a class of borders, then we should be able to extend
the methodology to cover well-defined subclasses of nonlinear functions. However,
if the problem is caused by some basic characteristic of nonlinear borders, we
will not be able to extend domain testing to any class of nonlinear functions.

For linear borders, we have assumed that {f the gpiven border is linear, and
if there i{s a domain error, then the correct border is also linear. In order to

extend our testing results to particular subclasses of nonlinear functions, such

as quadratic or cubic polynomials, we must assume that if the given nonlinear

border is in error, then the correct border is in the same nonlinear class. This
nonlinear class will be specified by K parameters; for example, consider the general
form of a two-dimensional quadratic in terms of variables X and Y, where A, B, C,...
are coefficients, and K = 6:

sz + BYZ +CXY + DX+ EY +F = 0.
Then (K-1) points can be chosen in order to solve for these K coefficients. For
the example above, the five points (X , Y,], 1 = 1,...,5, should satisfy the following

system of equations:

e - Sl s
2 2 [| A 0

- S i S T T O :
-9 12 . s . S i 3 e 0
Al ah s L sl
: 9 * 2 3 % . :§ . 0
xs YS xSYS XS YS 1 ; |

Define an independent set of (K-1) points [xi. Yll as a set which can be used to

solve for the coefficients, and thus determine a specific member of the nonlinear

class.

We can now formulate the general nonlinear domain testing strategy in terms
of these observations. (K-1) ON-OFF pairs of points are chosen such that the
(K-1) ON points are independent and each OFF point is chosen a distance ¢ from the
corresponding ON point. This requires 2*(K-1) test points per nonlinear border.
The (K-1) ON-OFF line segments formed by this set of pairs have been chosen so that
the only correct borders which yield correct test results must intersect each of
these ON-OFF line segments. For any particular correct border, there are (K-1)
independent intersection points, which determines the border completely. Note that

the intersection points are independent if ¢ is chosen sufficiently small, since

48
the ON points are independent for the given border. A further requirement, as in
the linear case, is that all OFF points satisfy all inequality borders other than
the one being tested.

While a single OFF point was sufficient in the linear case, the independence
criterion requires (K-1) OFF points for each nonlinear border. In the former case
linearity allowed the OFF point to be shared by all the ON points, since the linear
independence of the points identified as lying on the true border is guaranteed
by the linear independerce of the ON points themselves. If we were to test a non-
linear border with (K-1) ON points and a single OFF point, we would be able to
conclude that the correct and given borders intersect at (K-1) points. However,
we cannot conclude that these (K-1) points are independent. We know of no
selection criterion for the ON points which would guarantee the independence
of the jntersection points using only one OFF point. So an effective strategy
requires the full set cf 2%K test points, and unfortunately K grows very rapidly
as the dimensionality and degree of nonlinearity of the border increases.

A two-dimensional nonlinear border is a very special case, and even though
the general strategy is effective, a slightly different testing strategy can be

formulated to reduce the number of required test points. The basic difference is

that the intersection between two-dimensional nonlinear borders from the same
class is a finite set of points, the maximum number of which can be determined
from the form of the function. For example a pair of two-dimensional quadratic
curves can intersect in at most four points. This means that any set of more than
four points cannot possibly lie on two distinct quadratics, and any five points
uniquely determines a specific quadratic. Therefore, we do not have to worry
about independence in the two-dimensional case, since any set of (K-1) discinct
points will produce a system of independent linear equations. For example,

any three distinct points can lie on at most one circle, wince two circlen

cannot have more than two points in common.

———

in

L]

49

We test a two-dimensional nonlinear border with K points, e,g., six for
a quadratic selected in an ON-OFF-ON-OFF.... sequence along the border as diagrammed
for the closed border in Figure 11. Since the correct border must pass on or
above the given border at each ON point, and must pass below each OFF point, the two
borders must intersect an odd number of times, let us assume once, in each ON-OFF and
OFF-ON interval along the border. The K test points define (K-1) intervals on

the border, each of which must contain at least one intersection point. We have

shown that these (K-1) points must be independent, and since they cannot lie

on two distinct borders, the given border must be correct within €. As a
technical detail, it is also possible that the correct border may be tangent to
the given border at an ON point, but if this occurs, an argument involving the
derivatives of the two borders at that point can be invoked to justify the choice
of the test points for this two-dimensional case.

Although the domain strategy has been extended to nonlinear boundaries,
points must be generated in a domain defined by nonlinear boundaries, requiring
the solution of nonlinear systems of equations. Since this probably requires
excessive prucessing for arbitrary nonlinear borders, it does not represent a

very practical approach.

Adjacent Domains Which Compute the Same Function

If two adjacent domains compute the same function, any test point selected
for their common border is ineffective, since the same output values are
computed for the test point regardless of the domain in which it lies. We
will demonstrate how domain testing can be modified to deal with this problem.

In Figure 12(a), assuming domain D, were being tested, we must compare
the functions calculated in domains D1 and D2 for test point A, D1 and D‘ for
B, and D1 and F3 for C. One of the major problems to be solved is the

identification of these adjacent domains. We assume that when testing domain

Given Border — =
Correct Border ===w=-

FIGURE 11 Testing a Two-Dimensional Nonlinear Border

- - ———

51
Dl the partitioning structure of the adjacent domains and the program paths
associated with these domains is not known. It would be very complicated
to have to generate the domains which are adjacent to the border being tested.

Figure 12(b) illustrates an approach to this problem. The border being
tested is shifted parallel by a small distance ¢, so that test points A and B
now belong to adjacent domains, D2 and D‘. respectively. The modified program
is then retested using test points A and B, which will as a by-product identify
the paths associated with these two adjacent domains. We can then compare
the output for each test point before and after the shift. If it {s different,
then we can definitely conclude that the adjacent domain computes a different
function, and this test point can safely be used. If the output is the same
for that test point, then we can conclude that either assumption (1) |
or (4) is violated. However, there is no way to decide this, and the only
practical approach i{s to use further test points. If we know that coincidental
correctness cannot occur, then we could conclude on the basis of a singie point
that the adjacent domain computes the same function.

If two adjacent domains such as D1 and 02 in Figure 12(a) are found to
compute the same function, then in order to carry out the domain testing strategy
on the given border, new test points may have to be selected. For example,
point A can no longer be used, and this requires ascertaining the border structure
between D1 and DZ' Thus a considerably amount of processing is required which
is probably not practical.

In summary, a technique of testing each point twice will assure us that
assumption (4) is valid, and this redundancy might be viewed as a reasonable price

to pay to eliminate this restriction. However, {f an instance {s found where the #

assumption {s not valid, a basic theoretical problem exists. 1

Original Border ——————
Perturbed Border ——-—-—-

|
|
-
}
|
|
|
|
i
i
|
|
|
I
-
|
i
[
o o

FIGURE 12 The Identification of Adjacent Domains

53

e
.
s

Domain Testing for Compound Predicates

Assumption (3) stated that a path contained only simple predicates, and
this implied that the set of input points could be characterized quite
simply as a single domain. We must consider what complications can occur
for compound predicates, and how the domain strategy can be generalized
to test paths containing these predicates.

The set of lnputs corresponding to a path is defined by the path
condition, consisting of the conjunction of the predicates encountered along
the path. If a compound predicate of the form C(i) AND C(i+l)] is encountered
on the path, the path condition {s still a single conjunction of simple

predicates, and the only difference is that two of the simple predicates ,

are produced as a single branch point on the path. No modifications of the

domain testing stratery are required in this case.

However, compound predicates using the Boolean operator OR are more

complicated. Consider a path containing the following predicates:

C

Cl. C e [C1 OR C1+l], -oe C,

2,
The path condition i{n this case is the conjunction of these predicates, and

in standard disjunctive normal form:
(C1 AND C2 AND ... AND Cl AND ... AND Ct)
Ok [C, AND C, AND ... AND C _, AND ... AND C |
The set of input data points following this path consists of the union of two
domains, each defined by the conjunction of simpie predicates, and in general
any number of these domains are possible.
Assuming linear predicates, each of these domains is a convex polyhedron,

but the domains may overlap in arbitrary ways. The major problem caused by

these compound predicates is that the domains correspond to the same path, and
the assumption that adjacent domains do not compute the same function {s violated.

We identify three cases of importance: domains which do not overlap, domains

which partially overlap, and domains which totally overlap.

i-I.-lH.-iI-‘IiHhHn-Hi‘nHlﬁ“*‘ﬁiﬁﬂhlﬂ..ﬁlﬂh...‘.-nnﬂ-nr : et

54

The first case is indicated in Figure 13(a), where domains D, and D,

are defined by the compound predicate [C; OR C,], and domain D, corresponds to
some other path. In this case our methodology can be applied to each domain
separately, since the two domains for this path are not adjacent.

In Figure 13(b), the domains partially overlap, where D1 U D2 is the

domain defined by Cl, and D, U D, is the domain defined by C In the example

1 k) 2
we cannot test the domains separately, since they are adjacent and the same

function {s computed {n each. For example, any test point for Cl’ selected

along that part of the border between D, and D3. i{s ineffective since the same

1
results are computed for it in both of these regions. So, in this case we
must insure that the adjacent domain assumption is satisfied by selecting
test points for C1 and C, which lie in that part of the border adjacent to a

domain for some other path.

In order to deal effectively with this case, some extra analysis will have to

be made, first in order to identify this second case, and also to identify the
actual domain, which {s no longer convex. The borders of this domain are shown
in bold face in Figure 13(b). This is probably no longer a practical approach,
especially for higher dimensions.

The third case {s shown in Figure 13(c), where the domain 01 for predicate
C1 is a subset of the other domain, D

|

This presents a serious problem since there are no test points for border B of

domain D1 which can satisfy the adjacent domain assumption, and therefore B cannot

be tested effectively. The technique developed in the previous section should

help to identify this case. However, even if this case could be identified, testing

for border B {s no longer a practical procedure.

So, in summary, a compound predicate of the form [Cl AND C2] is the same as

two simple predicates, and domain testing can be applied to a domain defined with

this type of compound predicate. In addition, {f the compound predicate

U DZ' which {s obtained for predicate C,.

b & T X X L
X D, X D, X D, X
|) SURE

FICURE 13 Domains Defined With Compound OR Predicates

56

is of the form [C1 OR Czl and the domains are distinct, domain testing can be
applied to each domain separately. However, if the domains overlap, this
introduces the problem of adjacent domains which compute the same function.
Although we may not find effective test points for domains which overlap in
arbitrary ways, we can recognize this situation and identify it as a border

which cannot be tested effectively.

57

CHAPTER 6

ERROR ANALYSIS OF DOMAIN BORDERS AND DISCRETE SPACES

An error analysis of domain borders is needed to resolve the following

questions: !
1) How small should ¢ be chosen in selecting an OFF test point for linear
borders, and where are optimal locations for the test points?

11) We required the OFF test point for a given border to satiafy all in-
equality borders except that being tested; how do potential errors
in other borders of the domain affect this rejquirement?

111{) What are the difficulties in applying domain testing in a discrete
space or in a space in which numerical values can only be represented
with finite resolution, and can these difficulties be circumvented by
taking reasonable precautions with the method?

These and other error analysis problems are dealt with in detail in
reference (14. It is interesting to observe that the answvers to questions

i), 11), and 1{11) all involve the same worst-case situation: wvhen two adjacent

linear borders of the same domain are nearly parallel. Figure 14 indicates

the two cases which can arise from adjacent linear borders which are

nearly parallel. Figure l4(a) shows a given border segment EF in which the

two adjacent border segments EP and FQ both make large external angles

01 and 02. near 180°, with the given border EF. This leads to very small

supplementary internal angles 01 and .2' and especially for 02. this results
in a very sharp "cornmer" of the domain. In Figure 14(b), the adjacent borders
PE and FQ are again nearly parallel to the given border EF, but a different

case is created. In this case, external anglés 01 and 02 are very small,

and the internal angles .1 and 02 are both near 180°.

FIGURE 14 Adjacent Border Segments Which are Nearly Parallel

59

We will briefly argue in this report that one of these two situations {s
the key to the analysis of questions {), {1{), and 1i1), and we refer the
reader to reference {12] for further details and proofs. Section 6.1 intro-
duces an error measure which will indicate the best location for each of the
three test points. Section 6.2 will deal with the problem of how interacting
border changes may affect the location of the test points. Section 6.3 briefly
introduces the problem of domain testing in discrete spaces, and gives a
sufficient condition to guarantee effective test points can always be chosen.
Since all the above arguments are given only for two dimensions, Section 6.4

will show that the same basic approach is effective for higher dimensions.

.1 An Error Measure for Test Point Selection i

In Figure 14(a), consider the selection of three tesat points A, B, and C :
for testing border segment EF. It is shown in reference [12] that the best
positions for two of them, say A and B, are points E and F, so the remaining
problem {s the locatfon of test point C. We have observed that if the given
border EF ia in error, then test points A, B and C will fail to detect errors
if the correct border is one which intersects line segments AC and BC. Thus
8iven C which is at a distance ¢ from the g8iven border and halfway between
A and B, an appropriate error criterion could be the "number" of erroneous
points which would be undetected, (.e., the area between the two borders, possibly
limited by either or both of the extensions of the adjacent borders EP and FQ.

It can be shown that this area measure can be bounded by the expression

¢[EF) 2
EF + 2¢ cot © s

where 6 is the larger of 9; and 6;.

.
"o

60

In order for this error measure to be finite, it is necessary that both 6,

i

ol then the error

and 8, are not too close to 180° for given €. If |cot 8] <<
measure is on the order of ¢-EF. This gives some guidance as to the choice of

¢ for point C.

Intetactin;ﬁ}order Segments

In presenting the domain strategy, we required the OFF test point to satisfy
all inequality borders except the border being tested. Usually this does not
impose much of a constraint on the choice of the OFF point, but Figure 14(b)

illustrates a situation in which a severe constraint exists. We can show that

F
+

- 7
(cot 8y

cot 83) ,
and since ¢ < h for choosing the OFF test point, this again shows the effect if
either 8, or &; or both are very small.

The same situation applies for interacting adjacent borders, and is illus-

trated in Figure 15. As long as the OFF points C1 and C2 for each of the adjacent

borders are chosen sufficiently close to those borders, and the external angles

8; and 8; are not too small, then the adjacent borders have a min{mal {nfluence
on the selection of the OFF point C for border EF. For example, point C

must lie insia' triangle EFU determined by given borders EP and FQ. The correct
borders which pose the worst case in limiting the selection of point C are

shown as dashed lines in Figure 15; these limiting correct borders are determined
by how close C1 and C2 have been chosen to their respective test borders. As a
result of these conditions, point C is constrained to lie within triangle EFV,

a more restrictive condition than presented by triangle EFU. It should be

clear that {f either A, or #. {is too small, or either C1 or C2 is chosen too

far fron ‘ts rtas-ect’ve test border, the regZon from which C cculd be chosen

would become restrictively small.

Given Borders
Possible Correct Borders —==—===

FIGURE 15 Effect of Interacting Adjacent Borders on Test Point C

6.3

Discrete Space Analysis

The previous several sections have indicated that if adjacent borders are
nearly parallel, then test point C is required to lie very close to the border
being tested. But in a discrete space this could cause a severe problem, for no
diacrete point may exist that close to the border. Similar problems exist for the
ON test points A and B, for {t may not be possible to choose them at extreme
points of the border.
For the discrete space we shall consider a two dimensional lattice, with
uniform spacing & in both dimensions. This models the situation where the
same data representation, integer or fixed-point, is used for two input variables.
For simplicity, let us again assume that points A and B can be chosen as
points E and F. We shall present a sufficient condition for a given domain with-
in this discrete lattice which guarantees that an OFF point C can be chosen as
a lattice point for each border so that the area criterion of Section 6.1 is finite.
The result is based upon the folloring two observations. First, any circle of diameter
v¥Z 4 always contains at least one lattice point. Second, from Figure l4(a),
note that if either external angles 9, or 8, are too near 180°, then the "width"

A

of the domain will tend to be very small in terms of the lattice resolution 4.

More formally, define the diameter d of a convex polygonal domain to be _;
the shortest distance from any extreme point to any domain edge not adjacent
to that extreme point; this corresponds to our informal argument about domain

"width". The sufficient condition can then be stated as:

63
Proposition 5

Given a domain with diameter d in a lattice with resolution &, if

3> =23 & = (3.535 B
2

then a lattice OFF point can be chosen for every border, and moreover all

external angles 9, and 8; are conetrained by

]

|cot 8, + cot 8] <

Sl

¢
s
3
$
£
£
¥
i
4
{

It is clear that there are some domains in a discrete space which cannot
be tested, but these are pathological cases where one of the domain dimensions
is on the order of the lattice resolution. Moreover, the result indicates a
simple computation in terms of the domain diameter to determine when such
domains are presented for testing. For domains which can be tested in a discrete

space, the important result from Proposition 5 is that a restriction has been

e MY e Y P S O N T~ 11

obtained on angles 8, and 8; which precludes both angles which are close to 180°

and angles which are too small. ;

6.4 Extensions of Error Analvsis to Higher Dimensions :

The previous arguments have all been made for two dimensions, so it is important :
that the essential ideas can be generalized to higher dimensions. We can observe
that {f two border segments are adjacent, they are intersecting hyperplanes. Again,
problems may arise if these two hyperplanes H1 and H2 are nearly parallel, and

this can be measured by taking the inner product of their unit normal vectors

n, and ny, yielding the cosine of the angle a between them:

1

- -

cos a = n,°n
172

64

Consider Figure 16 which indicates the testf{ng strategy for three “{mensions.

Hl is assumed to be the border to be tested by ON points Al' Ao A3 and C is

the OFF point. Hz is an adjacent border nearly parallel to Hl' and H1 intersects

H2 at line L. If it {s suspected that C may not be chosen close enough to H

only those borders which make an angle a of 10° or less with H

1.
1 need to be in-

vestigated further.

To determine a test point C, we need to select that correct border hyper-
plane which is the worst case relative to border HZ' and then determine whether
or not these two hyperplanes intersect. This computation is quite straight-
forward, and the following algorithm together with Figure 16 should indicate how
it can be accomplished:

(a) select the ON point A, furthest from line L (this is A, in Figure 16);

i 3

the worst case correct border hyperplane H, is then determined by line

3
L and line segment A1C;

(b) drop a perpendicular line segment from A, to line L; this makes an

i

angle 8 with line segment AiC'. where C' is the projection of point

C down on the hyperplane H, being tested; recall that C' is known,

1
for point C is obtained by first finding C';

and H, can be found by

(c) the angle ¢ between Hl 3

€
tan § = ——— ;

rural
Alc cos 8

(d) 1f ¢ < a, then hyperplanes “2 and 33 do not intersect; otherwise, ¢
should be chosen smaller so that this condition is satisfied.
Again, in this analysis, the fact that adjacent borders H1 and Hz are nearly

parallel proves to be the key point in selecting test point C. Yet, the above

algorithm can be used to choose C so as to compensate for this condition.

SRR N SR SO Y G_—" 5 S

j S

LOOKING ALONG

LINE L

65

A,

Hyperplane H,

Hyperplane H,
Hypefp'am Hs

Hyperplane H,

FIGURE 16 Error Analysis in Three Dimensions

T rp—

66
CHAPTER 7

CONCLUSIONS AND FUTURE WORK

The basic goal of this research i{s to replace the intuitive principles
behind current testing procedures by a methodology based on a formal treatment
of the program testing problem. By formulating the problem in basic geometric
and algebraic terms, we have been able to develop an effective testing methodology
whose capabilities can be precisely defined. In addition, since program testing
cannot be completely effective, we have identified the limitations of the strategy.
In several cases these limitations have proven to be theoretical problems inherent
to the general program testing process.

The main contribution of this research {s the development of the domain
testing strategy. Under certain well-defined conditions the methodology is
guaranteed to detect domain domain errors in li{near borders greater than some small
magnitude ¢. Furthermore, the cost, as measured by the number of required test
points, is reasonable and grows only linearly with both the dimensionality of the
{nput space domain and the number of path predicates. Domain testing also detects
transformation errors and missing path errors in many cases, but the detection of
these two classes of errors cannot be guaranteed.

Domain testing has also been extended to classes of nonlinear borders, and we
have shown that the methodology generalizes to any class of functions which can
be described by a finite number of parameters. Unfortunately, nonlincar predicates
pose problems of extra processing which probably preclude testing except for re-
ntric:cd cases. For example, just finding intersection points of a set of linear
and nonlinear borders can require an inordinate amount of processing.

Coincidental correctness i{s a theoretical limitation i{nherent to the program

testing process, and we have argued that {t prevents any reasonable finite testing

Py i SRR — sl . O i it

67

procedure from being completely reliable. In particular, the possibility of coin-
cidental correctness means that an exhaustive test of all pcints in an input
domain is theoretically required to preclude the existence of computation errors
on a path. Within the class of all computable functions there exist functions
which coincide at an arbitrarily large number of points, but if there is
sufficient resolution in the output space, coincidental correctness should be a
rare occurrence for functions commonly encountered in data processing problems.

The class of missing path errors, particularly those of reduced dimensionality,
has proven to be another theoretical limitation to the reliability of any finite
testing strategy. Although our methodology cannot be guaranteed to detect all
instances of this type or error, it can be extended to detect some well-defined
subclasses of missing path errors. Unfortunately, the extra cost of this modi-

ficat{on may be unacceptably high. Our analysi{s of missing path errors has

shown that the cause of the diff{culty {s that the program does not contain any

indfcation of the possible existence of a missing path error. Therefore, without

addi{tional information, a reasonable testing strategy for this class of errors
cannot be formulated.

The domain testing strategy requires a reasonable number of test points for
a single path, but the total cost may be unacceptable for a large program con-
taining an excessive number of paths. In particular, this may occur for large
programs with complicated control structures containing many iteration loops.
Additional research {s needed to substantially reduce the number of potential
paths. One area being investigated takes advantage of the fact that program
modules are often independent in that the control flow of one does not depend
upon variables defined in the other. In this way the combinatorial growth of the
number of domains to be tested can be controlled, and the domain strategy can be

made more practical. It remains to be shown to what extent this independence

68

property can be applied, and experimental evidence is needed of how frequently
independent modules occur in widely available programs.

We have assumed that an "oracle" exists which can always determine whether
a specific test case has been computed correctly or not. In reality, the
programmer himself must make this determination, and the time spent examining
and analyzing these test cases is a major factor in the high cost of software
development. One possible avenue for future research would be to automate this
process by using some form of input-output specification. If the user
provides a formal description of the expected results, the correctness of each
test case can be decided automatically by determining whether the output
specification is satisfied. This would reduce the cost of testing tre-
mendously, and these new testing techniques would gain acceptance more quickly
since the tedious task of verifving test data would be eliminated. In
addition, any extra information supplied by the user might be useful in
specifying special processing requirements which would indicate the existence
of a possible missing path error.

The domain test strategy is currently being implemented, and will be
utilized as an experimental facility for subsequent research. Experiments
should indicate what sort of programming errors are most difficult to detect,
and should yield extensive dynamic testing data. A most important contri-
bution would be to indicate both programming language constructs and programming

techniques which are easier to test, and thus would produce more reliable software.

REFERENCES 69

&

10.

11.

12.

Boyer, R.S., Elspas, B., and Levitt, K.N., "SELECT--A Formal System for Testing
and Debugging Programs by Symbolic Execution', PROCEEDINGS-1975 International
Conference on Reliable Software, Los Angeles, Ca., April 1975, 234-245.

Clarke, L.A., "A System to Generate Test Data and Symbolically Execute Programs",
IEEE Transactions on Software Engineering, Vol. SE-2, No. 3, Sept. 1976, 215-222.

Cohen, E.I. and White, L.J., "A Finite Domain-Testing Strategy for Computer
Program Testing", Technical Report 77-13, Computer and Information Science
Research Center, The Ohio State University, August, 1977.

Cohen, E.I., "A Finite Domain-Testing Strategy for Computer Program Testing",
Ph.D. Dissertation, The Ohio State University, June, 1978.

Elshoff, J.L., "A Numerical Profile of Commercial PL/I Programs', Report No.
GMR-1927, Computer Science Department, General Motors Research Laboratories,
Warren, Mich., Sept. 1975.

Elshoff, J.L., "An Analysis of Some Commercial PL/I Programs', IEEE Transactions
on Software Engineering, Vol. SE-2, No. 2, June 1976, 113-120.

Goodenough, J.B. and Gerhart, S.L., "Toward A Theory of Test Data Selection",
IEEE Transactions on Software Engineering, Vol. SE-1, No. 2, June 1975, 156-173.

Howden, W.E., '"Methodology for the Generation of Program Test Data", IEEE
Transactions on Computers, Vol. C-24, No. 5, May 1975, 554-560.

Howden, W.E., "Reliability of the Path Analysis Testing Strategy', IEEE Trans-
actions on Software Engineering, Vol. SE-2, No. 3, Sept. 1976, 208-215.

Knuth, D.E., "An Empirical Study of FORTRAN Programs',6 Scftware - Practice and
Experience, Vol. 1, No. 2, April-June, 1971, 105-133.

Ramamoorthy, C.V., Ho, S.F., and Chen, W.T., "On the Automated Generation of
Program Test Data", IEEE Transactions on Software Engineering, Vol. SE-2, No.
4, Dec. 1976, 293-300.

White, L.J.,Teng F.C., Kuo, H.C., and Coleman, D.W., "An Error Analysis of the
Domain Testing Strategy', Technical Report 78-2, Computer and Information Science
Research Center, The Ohio State University, August, 1978.

A DOMAIN STRATEGY FOR COMPUTER PROGRAM TESTING

APPENDIX B

From Infotech State of the Art Report, Software Testing, 1978.

L J white and E I Cohen

Department of Computer and Information Science
The Ohio State University
Columbus OM

ACRNOWLEDGENMENT

Phe authors would like to thenk B Chandrasekaran for Ais aseistance ia prepering

this paper ond in particular, for his contribution concerning the definitions of
domain and computation errors.

TAis revsearch van supported in part by the Air Force Office of Scientific Research
Crant 7734l

© L J White and E I Cohen

32%

e e i 8 o b : ——

TN T

T

-

AN

=
L J WYITE received the 8SCL degcee in electrical engineering from the University of
fincinrati in 1982, and the PAD degree in electricel engineering from the University
of Mich.gan in 1967. Ne is currently o Professor of Computer and Information Science
and of flectricel Engineering at The Ohio State University. Nis current research inters
ests dea. with the analyesis of aigorithms and solftware analysis and testing. Ne hes
publinshed in the aress of pattern recognition, automatic document classification, com=
dinatorial computing and graph ctheory. Ne Nas served as a consuitant for the monsanto
Research lLadoratory and Rochkwe!l International Corporation. and has had engineeriny
work ezperience with the Dow Chemical Company., the Rattelle Nemorial Research Institute
and the Lockheed Missile and Space Company. Dr White is a member of the IEKEE Computer

Society, ACN, SIAR, and Sigwea Xi.

. ad
£ CONEN was born in Boston, Nassachusetts in 1950. Ne received the 85 degree in pPVAIC’
from Mensselaer Polytechnic Institute, Troy, WY, in 1972, and the NS and PAD degrees.
Doth in Computer and Information Science, From The Ohjo State University., Columbus.
ONio, in 1971 and 197% respectively. MNe was a Research and reaching Associate in rhe
Department of Computer and Information Science of The Ohie State University fro® per?
to 1970. Ne worked as a programmer for WNeoterics. Ine, Columbus, Ohjo, in 1974 and o*
8 systems analyst for the State Data Centre, Columbus, Ohio, in 1977, WNe i currentis
with The Systems Products ODivision of IMM Corporation, Poughkeepsie, WNY. nie current
interests (mciude progras testing, software reliability, and high performance syate®
design. Dr Cohen is a member of ACN, IEER, Sigma Xi, end Phi Kappa Phi.

326

A DOMAIN STRATEGY FOR COMPUTER PROGRAM TESTING

INTROOUCTION

Program testing is an inherently practical activity, since every computer program must
be tested before any confidence can be gained that the program performs its intendod
function. Some of the best designed software has required that nearly as much effort
be spent planning and implementing the testing procest as was invested in the actual
coding. What the practitioner needs are better guidelines and systematic approaches
in the design of the testing process to replace the ad hoc approach which (s now so
prevalent in the testing of computer software.

It would be ideal (f there existed a ‘theory of testing' which could be used to rigor-
ously select program test points. The problem has unfortunately proven so intractable
that no comprehensive testing theory exists. Research by Goodenough and Gerhart (007)
and Howden (008,009) has resulted in an accepted body of theory concerning testing,
and has provided a rigorous basis for further research in this azea.

The objective of this paper is to present a methodology for the automatic selection of
test data. Under appropriate assumptions, this methodology will generate test data
which will detect a particular class of errors in a program, viz, ‘'domain errors' as
defined by Mowden (009). The proposed methodology is also described in greater detatl
in Cohen and white (00)) and in Cohen (004).

The goal of the testing process is limited to the successful detection of a program

error if any exists. Any attempt to (dentify the error, its cause, Of an appropriate
correction is properly categorized as debdugging., and is beyond the scope of our goal
in the testing process. Thus testing is essentially error detection, while debugging
is the more difficult process of error correction. Of course, in practice these two

activities usually overlap and are frequently combined into a single testing/debugging
phase in the softwvare development cycle.

An important assumption in our work is that the user (or an ‘oracle’) is available,
who can decide unequivocally if the output is correct for the specific input processed.
The oracle decides only if the output values are correct, and not whether they are com-
puted correctly. If they are incorrect, the oracle does not provide any information
about the error and does not give the correct output values.

The organization of the paper is as follows. 1In the first section, some preliminary
concepts are defined and discussed. Some assumptions must be made concerning the langu-
age in which the given computer program is written, and the ramifications of certain
language constructs are explored. The important concepts of program path and path pred-
icates, together with domains, are defined and characterized. The case of linear

327

#hicte and Cohen

predicates is given particular emphasis, since, in that situation, the domains assume
the simple form of convex polyhedra in the input space.

Logical errors in a computer program can be viewed as belonging to one of two classes
of errors:

e 'Domain errors'
e ‘'Computation errors'.

Informally, a domein error occurs when a specific input follows the wrong path due to
an error in the control flow of the program. A path contains a cosputation error when
a specific input follows the correct path, but an error in some assignment statement
causes the wrong function to be computed for one or more of the o.utput variables.

The proposed methodology, called the domsin strategy., is designed specifically to de-
tect domain errors. We will discuss two fundsmental limitations inherent to any finite
test strategy. One such limitation might be termed coincidental correctness. This
occurs when the computation for a specific test point is incorrect, but the output value
happens to coincide with the correct value. This test point would then be of no assist~
ance in the detection of the domain error which caused the change in control flow.
Another inherent testing limitation has been identified by Howden (009), and might be
called a miseing pach error, In which a required predicate does not appear in the given
program to be tested. This could result in a situation where no testing strategy can
systematically determine that such a predicate should be present.

The domain strategy is developed by utilizing the structure of the input space corres-
ponding to the program. More specifically, the control flow partitions the input space
{nto a set of mutually exclusive domaine. Each domain corresponds to a particular path
in the program, in the sense that the set of input data points in that domain will
Cause the corresponding path to be executed. The strategy proposed is path oriented;
in testing a particular path, we are actually testing the computations performed by

the program over a specific input space domain.

Given a particular path, the form of the boundary of the corresponding domain {s com-
pletely deternined by the predicates ia the control statements encountered in the path.
Thus, an error in such a predicate will be reflected as s shift in the boundary of the
corresponding domain. The testing strategy to be described tests a path for domain
errors, i e, detects domain boundary shifts by observing the ocutput values for a finite
number of test data having a prescribed geometrical relationship to the entire domain
and its boundary. These output valies are computed by executing the sequence of assign-
ment statements constituting the path. The method requires no information other than
the successfully compiled program for selecting effective test data. Thus the problem
has been converted from its usual form as an informal study of programs and programming
to a more formal investigation of the geometry of input space domains.

The strategy is initially described for the case of linear predicates ind a two-dimen=
sional input space. For the linear case, it is shown that, under appropriate assumpt-
ions, the number of test points to reliably test a domain grows only linearly with the
number of predicates along the path and with the dimensionality. The techniques are
then extended to N dimensions, and various other extensions are considered, including
non-linear predicates.

A domain boundary error analysis is presented, which is helpful in choosing the best
locations for test points. The application of the domain strategy in discrete spaces

328

P —

White end Cohen

is analysed to study the effect of roundoff error in selecting test points.

In the concluding section a number of open questions generated by this investigacion
are presented, and the prospects for the practical application of the domain testing
strategy are evaluated.

P MINA S

In order to investigate domain errors, we need to consider the language in which pro-
grams will be written. The control structures should be simple and concise, and should
resemble those available in most procedure oriented languages. For simplicity we
assume & single real-valued data type, and this is converted to integer values for use
as 00-loop indices. Because this is a path oriented approach, no extra control flow
problems are introduced by block structure. Thus no provision is made for block struct-
ure, as it would only add extra book-keeping to keep track of local variables and block
invocation or exit,

A number of programming language features are assumed not to OCcur in the programs we
are to analyse for domain errors. The first feature is that of arrays: despite the
fact that arrays coemonly occur in programs, a predicate which refers to an element of
an input array can cause major complications (Ramamoorthy (011)). A second class of
language features which will be excluded (n our analysis is that of subroutines and
functions. The problems of side effects and of parameter passing pose difficulties
for domain testing. The third class of features which are not currently analysed by
domain testing include non-numerical data types such as character data and pointers.
These are adaittedly very important features, and further research (s needed to invest~
igate wvhether these features pose any fundamental limitastions to the domain testing
strategy.

S$ince input/output (I/0) processing is so closely linked to a machine or compiler en-
vironment, we will assume that all I/0 errors have previously been eliminated. Thus
only the most elementary [/0 capabilities are provided; input is provided by a simple
READ statement, and output (s accomplished with a simple WRITE statement.

The types of control flow constructs investigated in this research include sequence,
alternation, and iteration control. Since the analysis is path oriented, GOTO state-
ments could be included without adversely affecting any results, except that program
paths could become quite complex.

All computation (s accomplished by means of arithmetic assignment statemeants which alsc
provide the basic sequential flow of contrcl. In each statement a single variable is
assigned a value. The right hand side of an assignment statament is an arithmetic
expression using variables, constants, and a set of basic arithmetic operators

(s =¢ ®*» Ao

The general predicate form used for control flow is a Boolean combination of arithmetic
relational expressions. The logical operators OR and AND are used to form these Boolean
combinstions. Each arithmetic relational expression contains a relational oparator
from the set (¢, >, =, ¢, », #¥). These operators form a complete set, and thus the

White and Cohen

logical operator NOT (s unnecessary. If a predicate consists of two or more relational
expressions with Boolean operators, then it {s a compound predicate. A simple predic-
ate consists of just a single relational expression.

The alternation type of control flow is achieved by using the [F-THEN-ELSE-ENDIF con-
struct. The conditional associated with the |/F statement is a general predicate. Any
well-formed program segment, including the null program segment, can be used in the
THEN and ELSE portions of the !f construct. The ENDIF statement is just a delimiter
for the [F construct, which clarifies the nesting structure and eliminates any potent-
tally ambiguous ELSE clause.

A general iteration construct is included which consists of a D0 statement, loop body,
and ENDOO delimiter. The D0 statement can be in one of three forms:

e D0 I « INIT, FINAL, INCR;
e 00 WHILE (general predicate);
e 00 I = INIT, FINAL, INCR WHILE (general predicate).

The loop body can be any well-formed program segment, and the ENDDO is just a delimiter
to clarify the scope of the iteration.

The variables used in a program are divided into three classes. If a variable appears
in a READ or WRITE statement, it is classified as an input Or output variable respect-
ively: all other variables are called program variadles. In order to produce a clear
delineation between the three types of variables, we assume that a given variable be-
longs to only one of the above three classes.

Program paths and path predicates

A program can be represented as a directed graph G = (V,A), where V is a set of nodes
and A is the set of arcs or directed edges between nodes. In the language just dis-
cussed, wve have defined a set of basic program elements which consists of a READ,
WRITE, assignment, [F, and D0 statement, together with the ENDI!F and ENDDO delimiters.
The directed graph representation of a program will contain a node for each occurisnce
of a basic program element, and an arc for each possible flow of control between these
elements. While THEN and ELSE statements do not explicitly appear in the digraph, the
actions associated with them will be represanted as nodes in the digraph.

A valk (n a digraph (s defined as an alternating sequence of nodes and arcs (V,, A,,:.
Vae Rgogrocesy Ak-l.k. vk) such that each arc Al.l*l is directed from node vl to vl‘l'
A control path is then defined to be a walk in the directed graph beginning with the
node for the initial statement and terminating with the node for the final statement.
It should be noted that two walks which differ only in the number of times a particular
loop in the program is executed will be defined as two distinct control paths. Thus
the number of control paths in a program can be infinite.

Every branch point of the program (s associated with a General predicate. This predi-
Cate evaluates to true or false, and {(ts value determines which outcome of the branch
vill be followed. A predicate {s generated each time control reaches an IF or 00
statement in the given lanquage. The path condition 18 the compound condition which
must be satisfied by the input data point in order for the control path to be executed.
It is the conjunction of the individual predicate conditions which are generated at
each branch point along the control path. Not all the control paths that exist

1%

o ¥

e — ——

syntactically within the program are executable. If input data exist which satisfy the
path condition, the control path is also an erxecution path and can be used in testing
the program. If the path condition is not satisfied by any input value, the path is
said to be infeasidle, and is Of NO use in testing the program.

A simple predicate is said to be linear in variables V,, V;,, vn 1f 1t is of the
form:

AV, ¢ AV ¢ (... Anvn ROP K,
where K and the A‘ are constants, and ROP represents one of the relational operators
(¢,>,=,6,2,¢). A compound predicate is linear when each of its component simple predi-
cates is linear.

In general, predicates can be expressed in terms of both program variables and input
variables. However, in generating input data to satisfy the path condition we must wor*
with constraints only {n terms of input variables. If we replace each program variavic
appearing in the predicate by its symbolic value in terms of input variables, we get

an equivalent constraint which we call the predicate interpretation. A particular
interpretation is equivalent to the original predicate in that input variable values
satisfying the interpretation will lead to tho computation of program variables which
also satisfy the original predicate. A single predicate can have many different inter~-
pretations depending upon which path i(s selected, for each path will in general consist
of a different sequence of assignment statements. The following program segment pro-
vides example predicates and interpretations.

READ A,B;

IFA>0DB
THEN C = B » 1;
ELSEC =8 - 1;
ENDIF;
D = 2%A & B;
IFcso
THEN E = O;
ELSE
00 1 = 1,B;
E=E « 2°;
ENDOO;
ENDILF;
IFDe2
THEN P e E + A;
ELSE F = E - A;
ENDIF;

WRITE P

In the first predicate, A > B, both A and B are jinput variables, so there i{s only one
interpretation. The second predicate, C € O, will have two interpretations depending
on which branch was taken in the first [F construct. For paths on which the THEN

C = B ¢+ 1 clause is executed the interpretation (s B ¢+ 1 ¢ O or equivalently B ¢ -1,
When the ELSE C = B - | branch is taken, the interpretation is B - 1 ¢ O, or equivalently
B € L. Within the second I[F-THEN-ELSE clause, a nested D0-loop appears. The 00-loop
is executed:

b))

e

e

———

No times if B < 1
once {f 1 « B <2
twice 1f 2 € B < 3
etc.

Thus the selection of a path will require a specification of the number of times that
the 0D0-loop is executed, and a corresponding predicate is applied which selects those
input points which will follow that particular path. Even though the third predicate,
D = 2, appears on four different paths, it only has one interpretation, 2*A + B = 2,

since D is assigned the v lue 2°A + B in the same statement in each of the four paths.

Importance of linear predicates

The domain testing strategy becomes particularly attractive from a prac;xcal point of
view {f the predicates are assumed to be linear in input variables. Jt might seem to
be an undue limitation to require that predicate interpretations be linear for the pro-
posed strategy. In fact, however, as the following discussion shows, this represents
no real limitatioa for many important applications.

A number of authors have provided data to show that simple programming language con-
structs are used more often than complex constructs. Knuth (010) studied a random
sample of FORTRAN programs and found that 86% of all assignment statements were of the
forms:

Vi = V;,
Vi = Vy ¢ V,,
or V, = V; = V,.

Also 0% of all DO loops in the programs contained less than four statements. Elshoft
{005,006) studied 120 production PL/1l programs and showed similar results, including
the fact that 97% of all arithmetic operators are + or -, and 98\ of all expressions
contain fewer than two operators.

An experiment of particular relevance to the present context is reported in Cohen (004)
using typical data processing programs, since program functions and programming practice
tend t0 be reasonably uniform in this area. A random sample of 50 COBOL programs was
taken directly from production data processing applications for this study. In this
static analysis each predicate is classified according to whether {(t (s linear or non-
linear, and the number of input variables used in the predicate has also been recorded.
In addition, the number of input-independent predicates were tabulated, since these
predicates do not produce any input constraints. The number of equality predicates is
also reported since these predicates are very beneficial in reducing the number of test
points required for a domain. These data are summarised {n Figure 1.

The most important result is that only one predicate out of the 1225 tabulated in the
study can possidly be a non-linear predicate. The predicates are also very simple since
most of them refer to only one itnput variable, and no predicate in this sample uses

more than two i(nput variables.

In conclusion, while this study by no means represents an exhaustive survey, we believe

the sample is large enough to indicate that non-linear predicate (nterpretations are
rarely encountered in data processing applications. It i{s clear that any testing

332

-

Total Average Range
Total lines 12 628 253 31-1287
Procedure division lines 8139 163 13-822
Total predicates 1225 25 C~118
Linear predicates 1070 21 0-104
Non-linear predicates 1 0.02 0o-1
Input-independent predicates 154 k] 0-28
Predicates with 1 variable 945 19 0-97
Predicates with 2 variables 125 2+S 0-20
Equality predicates 779 1S5-S 0-76
Figure l: Predicate statistics for 50 COBOL programs

strategy restricted to linear predicates {s still viable in many areas of programming
practice.

Inpu ce structure

A program which has N (nput variables and produces M output variables computes a funct-
ion which maps points in the N-dimensional input space to points in the M-dimensional
output space. The input space i3 partitioned into a set of domains. Each domain
corresponds to a particular exacutable path in the program and consists of the input
data points which cause the path to be executed. Mcre formally, an input space domain
is defined as a set of input data points satisfying a path condition, consisting of a
conjunction of predicates along the path. In this discussion, these predicates are
assumed to be simple; compound predicates will be discussed later.

We assume that the input space is bounded in each direction by the minimum and maximum
values for the corresponding variable. These min-max constraints do not appear in the
program but are automatically appended to each path condition. Since a single data type
is used for all vartables in our languace, each variable will have the same min-max
constraints.

The boundary of each domain i{s determined by the predicates in the path condition and
consists of dorder segments, where each segment (s the section of the boundary deter-
mined by a single simple predicate in the path condition. Each border segment can be
open or closed depending on the relational operator in the predicate. A closed border
segment is actually part of the domain and {s formed by predicates with ¢, 2, or = oper-
ators. An oyen bdorder segment fOorms part of the domain boundary but does not constitute
part of the domain, and is formed by <, >, and # predicates. We shall find it conven-
fent to use the term dorder operator to refer to the relational operator for the corres-
ponding predicate.

Since border segments in the input space are determined by the particular predicate
interpretations on the path, the form of the segment may be different from that of the
original predicate. For example, with (nput variables A and B, the linear predicate

A < C ¢ 2 can lead to a nou-linear border segment, A < B*B + 2, when C = B*B. Similarly,
a non-linear predicate, C > A®*A + B, will produce a linear border segment, A » B, when

333

AD=AD77 414

UNCLASSIFIED

OHIO STATE UNIV RESEARCH FOUNDATION COLUMBUS
METHODOLOGIES FOR COMPUTER PROGRAM TESTING.(U)
AUG 79 B CHANDRASEKARAN » L J WHITE

OSURF=760722/784741 AFOSR=TR=79=-1095

F/6 9/2

AFOSR=T77=3416

e

herdl
11t 2
R

zs gy ..

NATIONAL BUREAU Of STANDARDS
WCROCOPY BESOLUTION TEST Coamt

o

C = A®A +* A. Since a predicate can appear on many paths and each path can execute a
different sequence of assignment statements for the variables used in the predicate,
a single predicate can have many different interpretations and can form many discon-
tinuous border segments for various domains.

The total number of predicates on the path i{s only an upper bound on the number of
border segments in the domain boundary since certain predicates in the path condition
may not actually produce border segments. An input-independent predicate interpretat-
ion is one which reduces to a relation between conatants, and since it is either true
or false regardless of the i(nput values, it does not further constrain the damain. A
redundant predicate incerpretetion is one which is superseded by the other predicate
interpretations, i e, the domain can be defined by a strict subset of the predicate
interpretations for that path.

The general form of a simple linear predicate interpretat<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>